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Graph Analytics at Scale
• Today we found huge graphs (>100B arcs) all over the place


• Web snapshots, social networks, biological graphs, …


• Very large graphs require new approaches


• Standard representations in main memory are either impossible (graph too 
large) or very expensive (many TB of core memory)


• Distributed approaches spend a very large amount of time distributing data 
among nodes


• What can we do? Compression!



The WebGraph Framework
• An open source framework for compressed representation of graphs


• One of the most long-lived projects of this kind (>20 years!)


• Hundreds of publications in major conferences and journals using it (>1700 
references)


• In 2011 news went around the world: Facebook had four degrees of 
separation


• The measurement was performed at Facebook in collaboration with our group 
using WebGraph (at that time, 721 M nodes, 69 B links, just 211 GB!)


• Common Crawl distributes data using WebGraph

http://webgraph.di.unimi.it/
https://github.com/commoncrawl/cc-webgraph


Software Heritage History Graph
• The largest public archive of public and git-style version control history


• Data model: a Merkle direct acyclic graph (intuitively: a single git repository with the 
development history of all public code)


• One of the largest graphs of human activity available


• 44 billion nodes, 769 billion arcs (December 2024), represented by WebGraph in 251 GB 
instead of >6 TB!


• The previous Java WebGraph-based pipeline for graph analytics was born out of a 
collaboration between Inria and the Università degli Studi di Milano


• Storing explicitly the graph makes it possible to perform provenance analysis, plagiarism 
detection, clone detection, etc., at an unprecedented scale


• Still, Java started to get in the way

THE GREAT LIBRARY OF SOURCE CODE



(Web)Graph Compression
• Immutable storage for large graphs


• Trivial: CRS (Compressed Sparse Row)


• All successor in a single array, with pointers at the start of each list


• Next step: bit stream and gap compression with instantaneous codes


• Big winner: reference compression (copy links from previous nodes)


• URL order makes this work


• Clustering algorithms work too (and no need for external info)



Superfast Primer on Instantaneous Codes

• Unary: 1, 01, 001, 0001, 00001, …


• Elias ɣ: write x > 0 in binary, strip the highest bit, prefix with length in unary


• 1₁₀ → 1₂ → ε → 1·ε → 1


• 2₁₀ → 10₂ → 0 → 01·0 → 010


• 3₁₀ → 11₂ → 1 → 01·1 → 011


• 4₁₀ → 100₂ → 00 → 001·00 → 00100


• Elias δ: same as above but length in ɣ



Gap Compression

• 3, 7, 12  →  3 , 7 – 3, 12 – 7  →  011 · 00100 · 00101


• Offsets are now into a bit stream



Reference Compression
• Pages can have a significant overlap in their link


• E.g., from the same site


• We can copy some successors from a previous node in a small window and just 
write the remaining successors


• How maximize the compression?


• URL sorted order


• Clustering (LLP)


• This also improves gaps


• Dense web graphs: ≈ 1b / arc (!)



WebGraph in Rust
• Basic trait: a SequentialLabeling 
 
 
 
 
 
 
 
 
 
 
 

• A sequential graph is a SequentialLabeling with usize labels

pub trait SequentialLabeling { 
    type Label; 
    type Lender<‘node>: 
         for<'next> NodeLabelsLender<'next, Label = Self::Label> 
    where 
        Self: 'node; 

    fn num_nodes(&self) -> usize; 
    fn iter(&self) -> Self::Lender<'_>; 
}



Random Access
• Random access: 
 
 
 
 
 
 
 
 
 
 
 

• A random-access graph is a RandomAccessLabeling with usize labels

pub trait RandomAccessLabeling: SequentialLabeling { 
    type Labels<'succ>:  
        IntoIterator<Item = <Self as SequentialLabeling>::Label> 
    where 
        Self: 'succ; 

   fn num_arcs(&self) -> u64; 
   fn labels(&self, node_id: usize) ->  
        <Self as RandomAccessLabeling>::Labels<'_>; 
   fn outdegree(&self, node_id: usize) -> usize; 
} 



Labels on Arcs
• We have a zip operator for labelings


• If you zip a graph and a labeling, you get a labeled graph


• Wrapper type UnitGraph: given a graph, gives you a labeled graph where every 
arc is labeled with the unit type ()


• Projections: Left and Right give you the sides of the zip


• Left(UnitGraph(G)) = G (i.e., G ⨉ 1 ≅ G via left projection)


• The compiler understands this—working on G or Left(UnitGraph(G)) has the 
same performance!


• You can zip labels and get composite labels



Lenders
• Lenders are iterators whose returned item take an exclusive reference to the 

emitter


• Essential for stateful iterators returning (part of) the inner state

pub trait Lender { 
   type Item<'a> 
   where 
      Self: 'a; 

   fn next(&mut self) -> Option<Self::Item<'_>>; 
} 



sux
• Succinct data structures: data structures using just the space of the 

information-theoretical lower bound, but with operations asymptotically 
equivalent to standard structures


• For example, there are 4n binary trees, so it should be possible to represent a 
binary tree using log 4n = 2n bits (Jacobson) instead of 2n log n


• Partial port of sux (C++ project) and Sux4J (Java project)


• There are some existing crates (some porting the projects above)


• Rank and selection


• Elias–Fano representation of monotone sequences (e.g., pointers into records)



sux
• Mix-and-match of arbitrary rank and selection structures


• We use intensively the ambassador crate to delegate all rank, selection, and 
bit-vector access traits, so you can write 
 
 
 
 
 

• … and the last structure has also rank methods and access to the underlying 
bit vector

let bits = bit_vec![1, 0, 1, 1, 0, 1, 0, 1]; 
let rank9 = Rank9::new(bits); 
let rank9_sel = SelectAdapt::new(rank9, 3);

https://crates.io/crates/ambassador


Elias–Fano
• Given n and u we have a monotone sequence 0 ≤ x0, x1, x2, ... , xn–1 < u


• Store the lower ℓ= log(u / n) bits explicitly


• Store the upper bits as a sequence of unary coded gaps (0k1 represents k)


• We use at most 2 + log(u / n) bits per element


• Close to the succinct bound: quasi-succinct! 


• (Less than half a bit away, as Elias proves)



5 8 8 15 32

1 10 10 11 100001 00 00 11 00

01 00 00 11 00

1 2 2 3 8

01 01 1 01 000001

1 − 0 2 − 1 2 − 2 3 − 2 8 − 3

5, 8, 8, 15, 32 < u = 36, ℓ = 2



Some Very Personal Thoughts





Your Relationship With the Compiler

•Programming in Rust is like being in an emotionally abusive 
relationship. Rust screams at you all day, every day, often about things 
that you would have considered perfectly normal in another life. 
Eventually, you get used to the tantrums. They become routine. You 
learn to walk the tightrope to avoid triggering the compiler’s temper. 
And just like in real life, those behaviors changes stick with you forever.

•Emotional abuse is not generally considered a healthy way to 
encourage change, but it does effect change nonetheless.

•I can’t write code in other languages without feeling uncomfortable 
when lines are out of order or when return values are unchecked. I also 
now get irrationally upset when I experience a runtime error.

Jarrod Overson



But…

• Some people find error messages they can't ignore more 
annoying than wrong results, and, when judging the relative 
merits of programming languages, some still seem to equate 
“the ease of programming” with the ease of making undetected 
mistakes.


• Edsger W. Dijkstra, 1978, On the foolishness of "natural 
language programming” (EWD 667)



Rust is Strict
• Rust forces an in-world-vs.-out-world philosophy


• Inside, everything is beautiful: no UB (e.g., integer operations)


• Outside, hic sunt leones


• There are controlled membranes at the entrance and exit, and opt-outs


• Once you’re in, it’s paradise


• But the strictness has a cognitive cost 

• Example: many, many types of strings: String, str, Box<str>, OsStr, OsString, 
CString, Cstr, …


• unsafe { } is the entrance / exit of the pointer world



Rust Controls Data Access
• In Rust, you share many references (&), or you have an exclusive reference 

(&mut)


• Frank McSherry (very intuitive) view: you have a read-write lock on every 
piece of data


• The SharingXorMutation opens the way to great optimizations


• Compulsory move semantics frees you from memory management


• At the same time, there’s a cognitive cost


• SharingXorMutation & reference validity are enforced by the borrow checker


• Many levels of opt-out: Cell (just give up on SharingXorMutation), RefCell (an 
actual read/write lock!), UnsafeCell, Rc, etc.



Rust is Wonderful
• The borrow checker is a wonder of programming languages


• The Rust compiler is essentially the first compiler using a theorem prover to 
show your programs do work


• (essentially because, e.g., some languages detect uninitialized vars)


• This strictness makes your program work


• But borrow checking is Turing-complete, and obviously Rust prefers 
correctness (and no false positives) to completeness (and no false negatives)


• There are also shady areas: where the BC doesn’t go, and it knows; where the 
BC doesn’t go, but doesn’t know; and where the BC can’t go


• Also, very difficult to formalize (one compiler!)



Rust Has Special Needs
• Ownership is essential to Rust, and uniquely embodied in the BC


• Since it’s so unique, sometimes concepts are confusing


• Example: Box<[T]> and &[T] have exactly the same memory representation: a 
pointer and an integer


• Their only difference is ownership


• This was for me initially a problem: many construct in Rust exist because Rust 
does things in a different way


• The fact the Box::new is type-dependent doesn’t help


• Rust literature is very mathematical in that it tends to hide the motivation 
(“rabbit out of a hat”) 



Why Did I Come to Rust
• Maybe surprising, my only reason was to get rid of Java (GC, in particular)


• Our software manipulates very large data structure and 20 years ago 2B-
element arrays were kinda ok ,today it’s ridiculous


• The garbage collector gets in the way and bends your software


• So my way in was move semantics and automatic memory management


• Little I knew I would have met my dream language


• As Ryan Levick put it introducing Felix Clock at RustFest 2016:  
 
“Something very unique about Rust is the ability to really have your head in the 
cloud and thinking of things like category theory and advanced type systems, 
but at the same time having your toes wrestle around inside the bits.”



The Only Correct Syntax Choices
• Rust syntax is amazingly well-designed and orthogonal (for a mathematician)


• (More correctly: amazingly aligned to the syntax I’d like)


• a..b is [a..b) (Knuth’s notation for intervals / EWD 831)


• Projections of tuples starts at zero (EWD 831)


• If you know some category theory, the terminal set is the set towards which there’s a 
unique function, and that’s the singleton


• By tradition people uses the empty pair () for the element of the singleton, because 
∏∅  = { () } and Rust does the same


• Everything as a value, even loops


• const _ : () = assert!(…)


• But: https://github.com/dtolnay/rust-quiz

https://github.com/dtolnay/rust-quiz


Stunning Zero-Cost Abstraction Capabilities
• The type system and compiler have a stunning combinatorial understanding 

of types


• You can reason very mathematically about types


• My favorite example from WebGraph: the unit type ()


• If you know some category theory, the terminal set is the set towards which 
there’s a single function, and that’s the singleton


• By tradition people uses the empty pair () for the element of the singleton, 
because ∏∅  = { () } and Rust does the same


• A graph is (V, A) with A ⊆ V×V. A graph labeled on L is (V, A) with A ⊆ V×L×V.



Stunning Zero-Cost Abstraction Capabilities
• We can see a graph G = (V, A) as a ()-labelled graph G’ = (V, B) with B ⊆ V×{ () }×V.


• So if we have an algorithm on labeled graphs we can run it on G’


• E.g., transposition: (x, l, y) → (y, l, x)


• So now we have a transposed graph (G’)T = (V, T) with T ⊆ V×{ () }×V.


• If we project away the label, you get U ⊆ V×V and (V, U) is the transpose of G


• The Rust compiler understands all this


• So we have just a labelled version of everthing; to apply to normal graphs, we first 
“paint” everything with (), run the algorithm, and project it away from the result


• Same speed (everything cancels away)


• Cognitive cost: very complicated types sometimes



Conditional Trait Implementations
• The type system is based on Haskell type classes


• This is a further level of abstraction and flexibility from Eiffel (1986) or Go 
(2008) interfaces


• Conditional implementation does wonders in organizing logically features


• impl<T: bound> Trait for T {} implement Trait given that the bound is true


• Even better: impl<T: bound> Trait for Struct<T> {}


• In Java you have to resort to runtime reflection or “optional” methods


• Cognitive load: sometimes it is really difficult to understand why you can’t call 
a certain method



Sequences Done Right
• The sequence is the most used structure in computer science


• Not, generically lists, but sequences of contiguous elements


• Rust has an incredibly well thought out sequence ecosystem with several different flexible 
types with different purposes


• Arrays are fixed-length and sized


• Slices are variable-length and unsized


• Reference to slices access sequences by reference


• Vectors hold (own) variable-length sequences


• Boxed slices own fixed-length sequences (save one word WRT vectors, no excess space)


• But all of them are AsRef<[T]>



Sequences + Conditional Implementation
• You can write methods and implement trait based on AsRef<[T]> instead of a 

specific sequence implementation


• AsRef<[T]> act as “the idea of a sequence”


• It’s the typesafe version of pointer + length of C programming


• For example: Struct<A: AsRef<[usize]>>


• We can impl<A: AsRef<[usize]>> Struct<A> { … } and this will work for 
Struct<Vec<usize>>, Struct<[usize; n]>, etc.


• And for Struct<&[usize]>! The structure might refer to preallocated memory 
(zero-copy deserialization)



Example

id

data
owned ptr

len
cap

* * * * * * * * * *

Construction time

id len * * * * * * * *

Serialized

id

data
ref

len

ε-deserialization



Iterators Done Right
• If you used iterators in other languages, in particular Java and C#, you know 

how many things can go wrong when designing iterators


• Rust iterators are fully lazy—no hasNext crap and no boolean checks for 
exhaustion


• More importantly, by contract they give undefined results after the first None
—that’s the key to efficient lazy implementations


• If you want idempotence (once None, always None) just .fuse() the iterator


• If you want peekability, just .peekable() the iterator, etc.


• You pay for what you use



Conclusions
• I wasn’t having this fun programming since decades


• Coalescing 50 years of research in programming languages (ML ≈ early ‘70s) 
in a language with tight control on resources was definitely a brilliant idea (not 
Hoare’s original idea, tho, probably)


• And, yes, sometimes it’s frustrating, but once you’re in the mindset you can 
be incredibly productive


• Great match with AI and “vibe coding” as the compiler can catch problems at 
an early stage


• Most common issue: the rabbit hole of abstraction


• It’s so easy and has no cost, so you end up exaggerating a bit


