
Error Handling
SSP-RS — Safe System Programming (in Rust)

Samuel Tardieu Stefano Zacchiroli
2024-10-08



The billion dollar mistake

2/42 2024-10-08 SSP-RS — S. Tardieu & S. Zacchiroli Error Handling



Null references

A null reference of type “reference to type T” is a pointer which does not point onto an object of type T
but uses a special value representing the absence of an object of type T. A “reference to type T” and a
“null reference to type T” use the same type, denoted as T * in C and C++.

Here is an example of a null reference n:
1 #include <stddef.h>
2
3 int main() {
4 char *s = "Hello, world!";
5 char *n = NULL; // n doesn't reference a valid string or char
6 }

A reference to char and a null reference to char both use the same type char *.

3/42 2024-10-08 SSP-RS — S. Tardieu & S. Zacchiroli Error Handling



Null references as a way to signal an error

In C, some functions return NULL (a pointer with all bits set to 0) to represent a failure:
1 #include <stdio.h>
2 #include <stdlib.h>
3
4 int main() {
5 char *mem = malloc(100000000000); // Try to allocate 100GB
6 if (mem == NULL) {
7 fprintf(stderr, "Allocation of 100GB failed\n");
8 }
9 }

It is common for functions returning a pointer to return a NULL reference when they fail.

Since NULL is defined to be (void *) 0, the test can be written more concisely:
if (!mem) { … }

4/42 2024-10-08 SSP-RS — S. Tardieu & S. Zacchiroli Error Handling



Null references as a way to end a list of pointers

In C, NULL is also an usual way for marking the end of an array of pointers (as the NUL character is
used to mark the end of a string):

1 #include <stdio.h>
2
3 int main(int argc, const char *argv[], const char *env[]) {
4 (void) argc; // Prevent warning about an unused variable
5 (void) argv; // Prevent warning about an unused variable
6 printf("Environment variables:\n");
7 for (const char * const *p = env; *p; p++)
8 printf(" - %s\n", *p);
9 printf("End of environment variables\n");

10 }

Environment variables:
- SHELL=/bin/zsh
- EDITOR=vim
[…]
- DISPLAY=:0.0

End of environment variables

5/42 2024-10-08 SSP-RS — S. Tardieu & S. Zacchiroli Error Handling



Null references: Hoare’s billion dollar mistake

It looks like null references are great. Why does Tony Hoare�, who invented them, call them “my billion
dollar mistake”?

Origin of the null reference

In 1965, Hoare added references to ALGOL W�, an object oriented language, with type checking
performed by the compiler. He “could not resist adding the null reference because it was so easy to
implement” (Hoare, Qcon conference, London, 2009. See: lecture video�).

Since then, “this has led to innumerable errors, vulnerabilities, and system crashes, which have
probably caused a billion dollars of pain and damage in the last forty years” (Hoare, op. cit.).

6/42 2024-10-08 SSP-RS — S. Tardieu & S. Zacchiroli Error Handling

https://en.wikipedia.org/wiki/Tony_Hoare
https://en.wikipedia.org/wiki/ALGOL_W
https://www.youtube.com/watch?v=YYkOWzrO3xg


Null references: the problem

When a programmer is given an object of type T *, they expect it to dereference into an object of type
T. Since a null reference for this type is also an object of type T *, the compiler usually cannot check
that T * denotes a non-null reference.

Let’s look at the following example which displays the first and last names of a person:
1 #include <stdio.h>
2
3 typedef struct {
4 char *first_name;
5 char *last_name;
6 } person_t;
7
8 void display_person(const person_t *person) {
9 printf("%s %s\n", person->first_name, person->last_name);

10 }

On line 9, we can see that neither person nor person->first_name nor person->last_name
are checked against NULL. The function display_person assumes that it is given a valid non-null
reference containing no null references but nothing in its signature can reflect this.

7/42 2024-10-08 SSP-RS — S. Tardieu & S. Zacchiroli Error Handling



Protecting against null references

What if we do not want to crash? Should we adopt defensive programming tactics?
1 #include <stdio.h>
2
3 typedef struct {
4 char *first_name;
5 char *last_name;
6 } person_t;
7
8 void display_person(const person_t *person) {
9 if (person && person->first_name && person->last_name)

10 printf("%s %s\n", person->first_name, person->last_name);
11 }

Defensive programming allows the execution to proceed without crashing but does not report the error
in any way (it swallows the error). It may also produce an incorrect output (a missing line in this case).

8/42 2024-10-08 SSP-RS — S. Tardieu & S. Zacchiroli Error Handling



Defensive programming is rarely consistent

This is a trimmed-down excerpt from a large Java Android application:
1 public static final class VariablesListAdapter extends […] {
2 private VariableList variables;
3
4 public void sortVariables(final Comparator<String> comparator) {
5 if (comparator == null) { // Why would we call this with a null comparator?
6 return;
7 }
8 sortItems((v1, v2) -> comparator.compare(v1.getVar(), v2.getVar()));
9 if (variables != null) { // Ok, so sometimes the variables field can be null

10 variables.sortVariables(comparator);
11 }
12 callCallback();
13 }
14
15 public boolean containsVariable(final String var) {
16 return variables.contains(var); // Couldn't the variables field be null?
17 }

Programmers have to agree on how null references are used (spoiler: they don’t agree).

9/42 2024-10-08 SSP-RS — S. Tardieu & S. Zacchiroli Error Handling



How can we avoid null references problems?

There are several ways to deal with null references.

Enrich the type system with annotations

Java allows annotating an object type with the @NonNull annotation which is later used by IDE and
external tools:

An input parameter or a field annotated with @NonNull will be assumed to be non-null.
A function result or a field annotated with @NonNull can only receive something provably (or
declared) non-null.

Python also supports tagging parameters and variables with a type hint, and None (the equivalent of
null) must be included explicitly if allowed (T | None or Optional[T]).

Prevent null references from existing

In Rust, any reference designates an existing, live object. However, there exists a way to denote the
absence of an object.

10/42 2024-10-08 SSP-RS — S. Tardieu & S. Zacchiroli Error Handling



Interlude: the Rust way of dealing with an unexpected situation

The default behaviour for a Rust program entering an error state is to panic. The current thread will be
stopped, and possibly the whole program if nothing special is done to intercept the panic.

A user can choose to explicitly panic with an error message:
1 fn main() {
2 let n = std::env::args().len() - 1;
3 if n != 3 {
4 // We do not know what else to do if we don't have 3 extra arguments. Time to panic.
5 panic!("This program must be called with three extra arguments; got {n} arguments instead");
6 }
7 }

A crash in an unexpected situation is often better than going on with the execution while being in an
unknown state.

11/42 2024-10-08 SSP-RS — S. Tardieu & S. Zacchiroli Error Handling



Rust Option type

The Option<T>� type represents either the presence of a value of type T, or the absence of such a
value. It is defined as an enumerated type:

1 pub enum Option<T> {
2 Some(T),
3 None,
4 }

Option::None represents an absence of value
Option::Some(42) represents the presence of an integer whose value is 42
Option::Some(&s) represents the presence of a reference on an object s

Note
Option, Some, and None are imported into the default namespace and can be used directly in Rust
omitting the Option:: prefix.

12/42 2024-10-08 SSP-RS — S. Tardieu & S. Zacchiroli Error Handling

https://doc.rust-lang.org/std/option/enum.Option.html


Getting the content of an Option

The unwrap() method returns the object contained in an Option, or panics if there is no value:
1 // Function returning the name of the user in a Some, or None if unknown
2 fn current_user() -> Option<String> { … }
3
4 fn main() {
5 let s: String = current_user().unwrap(); // Panics if current_user() returns None
6 println!("The current user is {s}"); // The reference is necessarily valid (a.k.a. not NULL)
7 } // Memory for the String in s is deallocated here

Compare this with the C implementation, where checking for NULL is not mandatory:
1 char *current_user() { return …; } // May return NULL if the user cannot be found
2
3 int main() {
4 char *s = current_user();
5 printf("The current user is %s\n", s); // May display garbage, or crash
6 } // May leak memory here if the result of current_user() was allocated dynamically

In Rust, Option<String> and String are two different, incompatible types.

13/42 2024-10-08 SSP-RS — S. Tardieu & S. Zacchiroli Error Handling



Checking an Option without panicking

Of course it is possible to extract the content of an Option without panicking even if it contains None,
by using pattern matching:

1 fn main() {
2 match current_user() { // current_user() returns an Option<String>
3 Some(u) => println!("The current user is {u}"),
4 None => println!("I could not determine who the current user is"),
5 }
6 }

It is also possible to give a default value to use if the Option contains None:
1 fn main() {
2 println!("The current user is {}",
3 current_user().unwrap_or(String::from("<unknown user>")));
4 }

In both cases, we were not able to blindly use our Option<String> as a String.

14/42 2024-10-08 SSP-RS — S. Tardieu & S. Zacchiroli Error Handling



More about pattern-matching

A match construct must cover every possible variant and deconstructs the Option:
1 fn main() {
2 let user: Option<String> = current_user();
3 match user {
4 Some(u) => println!("The current user is {u}"), // Memory for the String in u is freed here
5 None => println!("I could not determine who the current user is"),
6 }
7 // Variable user is no longer usable here, it has been deconstructed by the match
8 }

On line 4, u is unified with the string contained in Some(…) and now owns the String that was
previously owned by the Option. When the match clause ends, u goes out of scope and the String
destructor is called to reclaim the heap memory.

Other useful methods on Option are is_some() and is_none(), both returning booleans, or
expect("message") which acts like unwrap() but gives a better context message when panicking.

15/42 2024-10-08 SSP-RS — S. Tardieu & S. Zacchiroli Error Handling



More precise error codes

16/42 2024-10-08 SSP-RS — S. Tardieu & S. Zacchiroli Error Handling



NULL/None is not the only way to signal an error

Functions in the C standard library uses the integer value -1 combined with the global variable errno
to signal errors in a more precise way:

1 #include <fcntl.h>
2
3 int open(const char *pathname, int flags[, mode_t mode]);

The open function returns:

A non-negative integer containing the file descriptor to use with read(), write(), close(),
etc. in case of success.
-1 in case of error. The global variable errno describes the cause of the error:

• EACCESS (13 on a Linux system): access denied
• EINVAL (22): invalid flags were provided
• ENOMEM (12): insufficient kernel memory available
• …

17/42 2024-10-08 SSP-RS — S. Tardieu & S. Zacchiroli Error Handling



Again, the same type is used

The same type (int) is used to return either a successful answer (the file descriptor) or an error (-1).
The following code will not trigger any warning at compilation time:

1 #include <fcntl.h>
2 #include <stdio.h>
3 #include <unistd.h>
4
5 int main() {
6 int fd = open("/etc/motd", O_RDONLY);
7 char buffer[16];
8 int n = read(fd, buffer, sizeof buffer - 1);
9 buffer[n] = '\0'; // Terminate the string in buffer before printing it

10 printf("Beginning of the file: %s\n", buffer);
11 }

This code does not check the return value of open, nor the return value of read. If read returns -1,
we write a NUL character before the beginning of buffer.

Note: do not confuse NULL and NUL
NULL (null pointer, of type void *) != NUL (0, of type char, for terminating a string)

18/42 2024-10-08 SSP-RS — S. Tardieu & S. Zacchiroli Error Handling



Is this even detected at runtime?
1 #include <fcntl.h>
2 #include <stdio.h>
3 #include <unistd.h>
4
5 int main() {
6 int fd = open("/etc/motd", O_RDONLY);
7 char buffer[16];
8 int n = read(fd, buffer, sizeof buffer - 1);
9 buffer[n] = '\0'; // Terminate the string in buffer before printing it

10 printf("Beginning of the file: %s\n", buffer);
11 }

The program compiles cleanly (-Wall -Wextra) and executes even though open() fails:
$ ./t
Beginning of the file:
$ valgrind ./t
==2859820== Warning: invalid file descriptor -1 in syscall read()
==2859820== Conditional jump or move depends on uninitialised value(s)
==2859820== at 0x4847D09: strlen (in /usr/lib/valgrind/vgpreload_memcheck-amd64-linux.so)
==2859820== by 0x48EA81E: printf (printf.c:33)
==2859820== by 0x1090BB: main (in ./t)

19/42 2024-10-08 SSP-RS — S. Tardieu & S. Zacchiroli Error Handling



Interlude: errno and multithreaded programs

Originally, errno was a local variable of type int. How has it been adapted to a multi-threading
environment without breaking backward compatibility with existing code?

A thread-local variable local_errno holds the error for the current thread (every thread gets its own
variable). errno is a macro which transparently dereferences this variable:

1 #define errno (*__errno_location()) // In errno.h from the standard library
2
3 int *__errno_location() { // Return the address of the current thread's local_errno
4 static __thread int local_errno; // local_errno is a thread-local variable
5 return &local_errno;
6 }

It can then be used as the regular errno variable could:
1 #include <errno.h>
2 #include <stdio.h>
3
4 int main() {
5 errno = 3; // Translates to (*errno_location()) = 3
6 printf("errno = %d\n", errno); // Will print "errno = 3"
7 }

20/42 2024-10-08 SSP-RS — S. Tardieu & S. Zacchiroli Error Handling



Exceptions

21/42 2024-10-08 SSP-RS — S. Tardieu & S. Zacchiroli Error Handling



What are exceptions?

An exception is an error condition which is propagated up the calling stack until it lands in a piece of
code willing to handle it. Let’s illustrate this with a Python example.

1 def x():
2 try:
3 print("In x() before y()")
4 y()
5 print("In x() after y()")
6 except Exception as e:
7 print(f"Caught exception in x: {e}")
8
9 def y():

10 print("In y() before z()")
11 z()
12 print("In y() after z()")
13
14 def z():
15 print("In z()")
16 raise Exception("exception raised from z")
17 print("At the end of z()")

19 print("In main program before x()")
20 x()
21 print("In main program after x()")

prints, while executed:
In main program before x()
In x() before y()
In y() before z()
In z()
Caught exception in x: exception raised from z
In main program after x()

The exception raised in z() has been
immediately propagated up to x() without
executing the end of z() or the end of y().

22/42 2024-10-08 SSP-RS — S. Tardieu & S. Zacchiroli Error Handling



A bit of exceptions terminology

An exception is said to be raised (Python, Ada) or thrown (C++, Java, Kotlin), depending on the
programming language.
An exception is said to be caught when its propagation is stopped.
A finally piece of code might get executed in any case whether an exception is raised or not
(Python, Java, Kotlin).

In the following Python example, the exception is not caught and is propagated up to the top-level which
causes the program to stop with an error. However, the finally block is executed before the
propagation.

1 try:
2 print("Before raise")
3 raise Exception("uncaught exception")
4 print("After raise")
5 finally:
6 print("In finally block")
7
8 print("After try block") # Not executed

$ python t.py
Before raise
In finally block
Traceback (most recent call last):

File "/tmp/t.py", line 3, in <module>
raise Exception("uncaught exception")

Exception: uncaught exception

23/42 2024-10-08 SSP-RS — S. Tardieu & S. Zacchiroli Error Handling



Finally and RAII

Even when a language does not implement finally, the use of RAII� (resource acquisition is
initialization) will run the object destructor before propagating an exception up. Here is a C++ example:

1 void my_func() {
2 lock_t lock = wait_for_lock(); // Get lock on critical section
3 […] // Do some things while locked
4 if (problem_detected())
5 throw "this is an exception because something went wrong"; // C++ exceptions can have any type
6 […]
7 lock.unlock(); // Unlock the lock
8 […] // Do other things that don't require the lock
9 } // The destructor of "lock" will unlock the resource before propagating the exception up

If problem_detected() returns true, lines 6 to 8 will not get executed. However, the destructor of
lock will be called and may, if this is the required behaviour, unlock the lock so that other threads can
access it.

Note: this is not always a good idea to unlock a lock in RAII mode as the system might be in an
inconsistent state. Some implementations (e.g., Rust) implement lock poisoning.

24/42 2024-10-08 SSP-RS — S. Tardieu & S. Zacchiroli Error Handling

https://en.wikipedia.org/wiki/Resource_acquisition_is_initialization


Exceptions were not created equal

Depending on the language and the implementation, exceptions may be used for exceptional situations
or as regular flow control tools:

In Python, exceptions are often used as an easy way to return early several levels up and do not
necessarily denote an error condition.
In most languages, exceptions should be reserved to uncommon situations: not raising an
exception does not cost much, while raising an exception can take a much longer time.

Why does “not raising an exception” have a cost at all?

Efficient implementations for exceptions use tables stored along the program code with the code
span covered by every exception handler and the type of exception to catch.
When an exception occurs, the call stack is unwind (getting up one function at a time) until a table
matches the current instruction pointer.
All function frames must have the same recognizable format in order to unwind the call stack. This
may require constraining the code generator and optimizer a bit.

25/42 2024-10-08 SSP-RS — S. Tardieu & S. Zacchiroli Error Handling



Checked and unchecked exceptions

In most languages supporting exceptions, any function is free to raise any exception. However in Java,
some exceptions are considered “checked exceptions” (as opposed to “unchecked exceptions”)
because the compiler will check that:

either we handle exceptions when they happen (for example FileNotFoundException) with a
try/catch block,
or we let them be propagated up, but we have to declare it in our function signature.

If we do none of those two things, the program will not compile. Checked exceptions:

force programmers to document which exception can be raised by each function;
do not allow exceptions to propagate up indefinitely unless they are declared on the main program
signature;
feel like a burden if all we want to do is have the program crash when such an exception happens.

Unchecked exceptions on the other hand can be raised at any time and propagated as high as
necessary in the call stack.

26/42 2024-10-08 SSP-RS — S. Tardieu & S. Zacchiroli Error Handling



Example of a checked exception

In the following Java example which prints the content of the “/etc/motd” file, any input/output error
would cause an exception derived from IOException to be raised. Since IOException is a
checked exception, it has to be declared on main() signature as it is not handled locally:

1 import java.io.*;
2
3 class Example {
4 public static void main(String[] args)
5 throws IOException // Mandatory, otherwise it will not compile
6 {
7 BufferedReader file = new BufferedReader(new FileReader("/etc/motd"));
8 String line;
9 // Print the content of the file, line by line

10 while ((line = file.readLine()) != null) {
11 System.out.println(line);
12 }
13 file.close();
14 }
15 }

27/42 2024-10-08 SSP-RS — S. Tardieu & S. Zacchiroli Error Handling



The Rust way of handling errors

28/42 2024-10-08 SSP-RS — S. Tardieu & S. Zacchiroli Error Handling



How does Rust handle errors?

Rust uses different types to represent different things. Option<T> is not the same type as T.
Rust does not use integers as C does with open() to represent both successful completion and
error conditions.
Rust does not use exceptions, but it forces the programmer to declare which type represents a
successful operation and which type represents an error.
Rust does not let the programmer ignore an error easily.

29/42 2024-10-08 SSP-RS — S. Tardieu & S. Zacchiroli Error Handling



Introducing Result<T, E>

In addition to Option<T>, Rust has a standard Result<T, E>� enumerated value:
1 pub enum Result<T, E> {
2 Ok(T),
3 Err(E),
4 }

A Result<T, E> can either be the Ok variant with a value of type T, or the Err variant which
represents an error with a value of type E describing the error.

As for an Option, the unwrap() method either returns the content of the Ok variant or panics while
displaying the content of the Err variant. The expect("message") method allows giving a better
panic message.

30/42 2024-10-08 SSP-RS — S. Tardieu & S. Zacchiroli Error Handling

https://doc.rust-lang.org/std/result/enum.Result.html


Reading a file in Rust

We have to use unwrap() on the result of File::open() (which returns a Result<File,
std::io::Error>) to get a File object fd. Same for read_to_string() (which returns a
Result<usize, std::io::Error>):

1 use std::{fs::File, io::Read};
2
3 fn main() {
4 let mut fd = File::open("/etc/motd").expect("cannot open file");
5 let mut s = String::new();
6 fd.read_to_string(&mut s).expect("cannot read file");
7 println!("The content of the file is {s}");
8 }

The program stops by panicking at line 4 because "/etc/motd" was not found on this system:
$ target/debug/t
thread 'main' panicked at src/main.rs:4:49
'cannot open file: Os { code: 2, kind: NotFound, message: "No such file or directory" }'

Contrary to the C version, it did not try to read the content of the non-existent file.

31/42 2024-10-08 SSP-RS — S. Tardieu & S. Zacchiroli Error Handling



Returning the error

If we do not want to deal with errors in our function, we can return prematurely when we encounter one:
1 use std::{fs::File, io::Read};
2
3 fn main() -> Result<(), std::io::Error> {
4 let mut fd = match File::open("/etc/motd") {
5 Ok(x) => x,
6 Err(e) => return Err(e),
7 };
8 let mut s = String::new();
9 if let Err(e) = fd.read_to_string(&mut s) { // Only execute this code if we have an Err variant

10 return Err(e);
11 }
12 println!("The content of the file is {s}");
13 Ok(())
14 }

If main() returns an Err variant, it gets displayed and a non-zero status code is returned to the shell:
$ target/debug/t
Error: Os { code: 2, kind: NotFound, message: "No such file or directory" }
$ echo $?
1

32/42 2024-10-08 SSP-RS — S. Tardieu & S. Zacchiroli Error Handling



Getting more concise

The pattern to extract the value from an Ok variant or prematurely returning the error from the Err
variant is so common that a one-character postfix operator exists in Rust to do that:

1 match a {
2 Ok(x) => x,
3 Err(e) => return Err(e),
4 }

can be simply written as a?. Our code can be shortened as:
1 use std::{fs::File, io::Read};
2
3 fn main() -> Result<(), std::io::Error> {
4 let mut fd = File::open("/etc/motd")?;
5 let mut s = String::new();
6 fd.read_to_string(&mut s)?;
7 println!("The content of the file is {s}");
8 Ok(())
9 }

33/42 2024-10-08 SSP-RS — S. Tardieu & S. Zacchiroli Error Handling



Is that all?

No, we can get even more concise by chaining the calls:
1 use std::{fs::File, io::Read};
2
3 fn main() -> Result<(), std::io::Error> {
4 let mut s = String::new();
5 File::open("/etc/motd")?.read_to_string(&mut s)?; // Note the use of two '?' in this line
6 println!("The content of the file is {s}");
7 Ok(())
8 }

Neat, eh?

Also note that File� is a Rust type which has a destructor: when the File goes out of scope, its
destructor calls close() automatically so that the file descriptor is freed and our process can reuse it.
Here, assuming File::open() has returned a Ok variant, this would happen at the end of line 5
because no variable owns the File returned by File::open() after this line.

34/42 2024-10-08 SSP-RS — S. Tardieu & S. Zacchiroli Error Handling

https://doc.rust-lang.org/std/fs/struct.File.html


What if we forget to check the Result?

The read_to_string() method on a File returns a Result<usize, std::io::Error>.
Since we never use the usize, what happens if we do not check the result?

1 use std::{fs::File, io::Read};
2
3 fn main() -> Result<(), std::io::Error> {
4 let mut s = String::new();
5 File::open("/etc/motd")?.read_to_string(&mut s); // The latest '?' has been removed
6 println!("The content of the file is {s}");
7 Ok(())
8 }

The compiler warns us about it:
--> src/main.rs:5:3
5 | File::open("/etc/motd")?.read_to_string(&mut s);
| ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
= note: this `Result` may be an `Err` variant, which should be handled

Nothing catastrophic will happen if we do not check it as the string s will be empty but still valid.
Nevertheless the compiler wants to ensure that we did not just forget to check for an error.

35/42 2024-10-08 SSP-RS — S. Tardieu & S. Zacchiroli Error Handling



How does the compiler know we didn’t check the Result?

The Result type is annotated with a must_use attribute. Because of this, a conversion of a
Result<T, E> to () (equivalent of void in C) will trigger the warning:

1 #[must_use = "this `Result` may be an `Err` variant, which should be handled"]
2 pub enum Result<T, E> { Ok(T), Err(E), }
3
4 fn f() -> Result<i32, String> { … }
5
6 fn main() {
7 f(); // Warning, we are converting a Result to () because of the ';'
8 f().unwrap(); // No warning
9 let x = f(); // No warning, we store the Result in the x variable

10 x; // Warning (double warning even, because "x" alone never does anything)
11 let y = f(); // Warning because the y variable itself is unused
12 let _ = f(); // No warning, we explicitly choose to ignore the Result here
13 }

Rust makes it hard to inadvertently not check the content of a Result but does not forbid us from
doing so, as illustrated on line 12.

36/42 2024-10-08 SSP-RS — S. Tardieu & S. Zacchiroli Error Handling



How can we return more than one error type?

Using Rust enum, it is easy to create a custom error type which encapsulates all possible sources of
errors we want to propagate:

1 pub enum MyError {
2 Io(std::io::Error), // Encapsulate an I/O error
3 Parsing(std::num::ParseIntError), // Encapsulate an integer to string parsing error
4 }
5
6 fn read_int_from_file(f: &str) -> Result<i32, MyError> {
7 let mut file = match std::fs::File::open(f) {
8 Ok(x) => x,
9 Err(e) => return Err(MyError::Io(e)),

10 };
11 // Read content of file and convert it to i32? If an I/O
12 // error occurs, return an Err with MyError::Io, if the
13 // content of the file is not an integer, return an Err
14 // with MyError::Parsing and the error inside.
15 todo!()
16 }

37/42 2024-10-08 SSP-RS — S. Tardieu & S. Zacchiroli Error Handling



Converting between error types

Although we haven’t studied traits yet, here is how it is possible to write a conversion function which let
us encapsulate a std::io::Error into our own MyError type:

1 pub enum MyError {
2 Io(std::io::Error), // Encapsulate an I/O error
3 Parsing(std::num::ParseIntError), // Encapsulate an integer to string parsing error
4 }
5
6 impl From<std::io::Error> for MyError {
7 fn from(e: std::io::Error) -> MyError {
8 MyError::Io(e)
9 }

10 }
11
12 fn read_int_from_file(f: &str) -> Result<i32, MyError> {
13 let mut file = match std::fs::File::open(f) {
14 Ok(x) => x,
15 Err(e) => return Err(From::from(e)), // Make a MyError using our implementation above
16 };
17 […]
18 }

38/42 2024-10-08 SSP-RS — S. Tardieu & S. Zacchiroli Error Handling



We can do even better

We have described the a? construct as being equivalent to
1 match a {
2 Ok(x) => x,
3 Err(e) => return Err(e),
4 }

It is a bit more powerful than that, and is in fact akin to:
1 match a {
2 Ok(x) => x,
3 Err(e) => return Err(From::from(e)),
4 }

It will convert the error into the excepted error type if a From::from() method has been implemented.

Converting to oneself

From<T> is implemented for any type T, so a MyError instance can be converted to a MyError (by
doing nothing).

39/42 2024-10-08 SSP-RS — S. Tardieu & S. Zacchiroli Error Handling



Rewriting the example

Knowing that the From conversion will be used if available, we can rewrite our example:
1 use std::io::Read; // To be able to use `.read_to_string()` on a file
2
3 pub enum MyError {
4 Io(std::io::Error), // Encapsulate an I/O error
5 Parsing(std::num::ParseIntError), // Encapsulate an integer to string parsing error
6 }
7
8 impl From<std::io::Error> for MyError {
9 fn from(e: std::io::Error) -> MyError { MyError::Io(e) }

10 }
11
12 impl From<std::num::ParseIntError> for MyError {
13 fn from(e: std::num::ParseIntError) -> MyError { MyError::Parsing(e) }
14 }
15
16 fn read_int_from_file(f: &str) -> Result<i32, MyError> {
17 let mut s = String::new();
18 std::fs::File::open(f)?.read_to_string(&mut s)?;
19 Ok(s.parse()?) // Will automatically select the right return type (i32) for parse()
20 }

40/42 2024-10-08 SSP-RS — S. Tardieu & S. Zacchiroli Error Handling



Using our function

We can extract the error from the result of our function:
1 fn main() {
2 match read_int_from_file("/tmp/test.txt") {
3 Ok(n) => println!("I have read the number {n}"),
4 Err(MyError::Io(e)) => println!("I/O error: {e:?}"),
5 Err(MyError::Parsing(e)) => println!("Parsing error: {e:?}"),
6 }
7 }

or we can use the _ pattern (which matches anything) if we do not care about the details of the error:
1 fn main() {
2 match read_int_from_file("/tmp/test.txt") {
3 Ok(n) => println!("I have read the number {n}"),
4 Err(_) => println!("I was unsuccessful in reading a number from the file"),
5 }
6 }

41/42 2024-10-08 SSP-RS — S. Tardieu & S. Zacchiroli Error Handling



Conclusion

With its Option<T> type, Rust does not let the programmer treat an absent value as if it was
present. This is a step-up compared to all languages with null references, whose type are
indistinguishable from the type of a valid reference.
With its Result<T, E> type, Rust does not let the programmer ignore errors unless they
explicitely intend to do so.
With enum, From and ?, Rust can propagate any error up the call chain by defining new types to
encapsulate the various error types, without requiring exceptions.

42/42 2024-10-08 SSP-RS — S. Tardieu & S. Zacchiroli Error Handling


	The billion dollar mistake
	More precise error codes
	Exceptions
	The Rust way of handling errors

