
Hardening System Programming
SSP-RS — Safe System Programming (in Rust)

Samuel Tardieu Stefano Zacchiroli
2024-09-24

How do we find (security) bugs in system programs?

2/50 2024-09-24 SSP-RS — S. Tardieu & S. Zacchiroli Hardening System Programming

Last week

What is system programming
Memory unsafety in system programming
Real-world security impact of memory unsafety
(lab) Developer setup and memory unsafety in practice

3/50 2024-09-24 SSP-RS — S. Tardieu & S. Zacchiroli Hardening System Programming

How do we fix this?

This week:

Dynamic analysis
• Testing
• Code instrumentation
• Fuzzing

Static analysis

Coming up next:

Better tooling (including programming languages)

4/50 2024-09-24 SSP-RS — S. Tardieu & S. Zacchiroli Hardening System Programming

Testing

5/50 2024-09-24 SSP-RS — S. Tardieu & S. Zacchiroli Hardening System Programming

Background — Software testing

Definition (Software testing)
Testing is the process of analyzing a software item to detect the differences between existing
and required conditions (that is, bugs) and to evaluate the features of the software item.

— IEEE Guide for Software Verification and Validation Plans (IEEE Std 1059-1993)

You need a specification to determine what is, in fact, a bug
Specifications consist of multiple requirements

• Requirements can be partitioned in functional and non-functional requirements
• Functional requirements are about system features and their semantics (the term refers to

mathematical functions that relate program inputs to outputs)
Security aspects are usually covered in specifications by non-functional requirements (along
other aspects such as performances, conformance to standards and regulations, etc.)
Testing can be performed by manual and/or automated means

6/50 2024-09-24 SSP-RS — S. Tardieu & S. Zacchiroli Hardening System Programming

Background — Software testing concepts

System Under Test (SUT)1 The part of the [software] system that is being tested
Test goal The specific behavior of SUT that is being tested

Test input Data provided as input to SUT to trigger the desired behavior
Expected result What SUT should return in response to test input

Actual result What SUT actually returns in response to test input
Test case A pair <test input, expected result>, in the context of a SUT

Test outcome Whether executing SUT with test input returned the expected result or not.
Usually a tristate: OK/KO/failure2.
Note that to evaluate test outcomes you need a test oracle capable of deciding whether
actual result matches expected result or not (it can be hard to determine!).

1also known as Program Under Test (PUT), for pure software systems
2failure = the test case evaluation could not be completed

7/50 2024-09-24 SSP-RS — S. Tardieu & S. Zacchiroli Hardening System Programming

Background — Testing workflow

Start from the specification
For each stated behavior extract a test goal
For each test goal choose one or more test cases

• Note that choosing test cases implies choosing test inputs
Encode all test cases into a test suite
Use a test runner to run the entire test suite periodically

• E.g., as a technical requirement for software acceptance,
• but also at each commit in CI/CD settings

Supporting tooling is available for most programming languages, with good cross-language uniformity
(especially if you focus on unit testing frameworks adhering to xUnit� conventions).

See, e.g., Wikipedia’s list of unit testing framework� for a comprehensive set.

8/50 2024-09-24 SSP-RS — S. Tardieu & S. Zacchiroli Hardening System Programming

https://en.wikipedia.org/wiki/XUnit
https://en.wikipedia.org/wiki/List_of_unit_testing_frameworks

Testing example

Consider the following function to determine whether the length of a string is even or not, together with
its specification in the accompanying docstring:
/* Takes a string as input. Returns: -1 if the string pointer is NULL; 0 if the string

contains an odd number of characters; a positive integer otherwise. */
int str_is_even(const char *s) {

int i = 0;
if (s == NULL) {

return -1;
} else {

for (i = 0; s[i] != '\0'; i++);
return (i % 2 == 0);

}
}

Q: Which test cases would you devise to convince yourself (and others) that the code is correct?

9/50 2024-09-24 SSP-RS — S. Tardieu & S. Zacchiroli Hardening System Programming

Testing example (cont.)
With, e.g., the Check� unit testing framework we can support xUnit-style testing in C like this:
START_TEST (test_even_strings) {

ck_assert_int_eq(str_is_even(""), 1);
ck_assert_int_eq(str_is_even("qu"), 1);

}
END_TEST
START_TEST (test_odd_strings) {

ck_assert_int_eq(str_is_even("q"), 0);
ck_assert_int_eq(str_is_even("qux"), 0);

}
END_TEST
START_TEST (test_null_string) {

ck_assert_int_eq(str_is_even(NULL), -1);
}
END_TEST

$./test_is_even # demo-time
Running suite(s): str_is_even
100%: Checks: 3, Failures: 0, Errors: 0
test_is_even.c:7:P:main:test_even_strings:0: Passed
test_is_even.c:13:P:main:test_odd_strings:0: Passed
test_is_even.c:18:P:main:test_null_string:0: Passed

10/50 2024-09-24 SSP-RS — S. Tardieu & S. Zacchiroli Hardening System Programming

https://libcheck.github.io/check/

How can we choose useful test inputs?

Information hiding:
• Black-box testing: rely only on the specification, treat the software as something you cannot look into

to determine test inputs.
• White-box testing: rely (also) on the implementation, e.g., use the source code to choose test inputs

that maximize code coverage.
Edge cases: given a functionality with a given domain (in the mathematical sense), choose inputs:

• Within the domain (valid),
• Outside the domain (invalid),
• Near either side of the edge of the domain (for both valid and invalid values).

Random testing: choose test inputs randomly at each test case execution.
• Abundant tooling available to automate this.
• Problem: non-reproducibility of test execution → inducing flaky tests.

Mutation testing: start from a set of predetermined test cases and randomly mutate them to
exercise relevant program behavior.

• Use both heuristics and dynamic fitness analyses to select useful mutants (“killing [useless] mutants”).
• Active area of ongoing research�.

11/50 2024-09-24 SSP-RS — S. Tardieu & S. Zacchiroli Hardening System Programming

https://en.wikipedia.org/wiki/Mutation_testing

The problem with testing

Q: Are you convinced our even-string-testing code is correct?
Why or why not?

Testing is great! Use it always and methodically (e.g., ensure you reach high code coverage of
both lines of codes and branching). But.
Testing is incomplete.

• Testing can establish the presence of bugs, but
• In general testing cannot establish the absence of bugs.
• The very best testing could do is showing that the set of specific nasty behaviors captured by test

cases does not affect your program.

Also, security issues are often correlated with exceptional circumstances that you haven’t thought of in
advance (whereas attackers did!). Hence it is difficult to come up with security-relevant test cases in
advance. In comparison, identifying relevant test cases for functional requirements is much easier.

(Still, testing is great!)
12/50 2024-09-24 SSP-RS — S. Tardieu & S. Zacchiroli Hardening System Programming

Dynamic analysis

13/50 2024-09-24 SSP-RS — S. Tardieu & S. Zacchiroli Hardening System Programming

Dynamic program analysis

Software testing belongs to a larger class of software verification and validation (V&V)�
techniques called dynamic program analysis.
In dynamic program analysis in general we:

• Run the program,
• observe what it does…
• …in order to verify that it conforms to its specification
• (or, more narrowly, that it does not exhibit specific problematic behavior).

We will now look into common subclasses of dynamic program analysis that can help identifying
security vulnerabilities:

Binary code instrumentation
Source code instrumentation
Fuzzing

14/50 2024-09-24 SSP-RS — S. Tardieu & S. Zacchiroli Hardening System Programming

https://en.wikipedia.org/wiki/Software_verification_and_validation

Binary code instrumentation — Valgrind

Valgrind� is a [binary] instrumentation framework for building dynamic analysis tools. There
are Valgrind tools that can automatically detect many memory management and threading
bugs, and profile your programs in detail. — Valgrind homepage�

Architecture: Valgrind tool = Valgrind core + tool plugin
Valgrind core performs dynamic binary re-compilation:

1. Loads your binary executable
2. Disassembles it (lazily, just-in-time) to an intermediate representation (IR)
3. Passes IR blocks to the tool plugin for translation ← instrumentation happens here
4. Assembles translated IR blocks back into machine code and executes them

Also Valgrind core:
• Based on the program execution state 𝑆 = a finite set of locations that can hold values (= all machine

registries + all memory accessible by the program),
• Maintains a shadow state 𝑆′ of metadata about all values in 𝑆 (e.g., whether the memory where a

value resides is initialized or not; the specifics depend on the used tools/plugins).

15/50 2024-09-24 SSP-RS — S. Tardieu & S. Zacchiroli Hardening System Programming

https://valgrind.org
https://valgrind.org

Memcheck: a memory error detector (based on Valgrind)

Memcheck� uses shadow values to track which bit values are undefined (i.e., uninitialised,
or derived from undefined values) and can thus detect dangerous uses of undefined values.
It is used by thousands of C and C++ programmers, and is probably the most widely-used
[dynamic binary analysis] tool in existence. — Nethercote and Seward, PLDI’07�

(Image by Eberhardt et al., full credits on last slide.)

16/50 2024-09-24 SSP-RS — S. Tardieu & S. Zacchiroli Hardening System Programming

https://valgrind.org/docs/manual/mc-manual.html
https://doi.org/10.1145/1250734.1250746

Valgrind example

1 #include <stdio.h>
2
3 void f(void) {
4 int *x = malloc(10 * sizeof(int));
5 x[10] = 0;
6 }
7
8 int main(void) {
9 f();

10 return 0;
11 }

You be Valgrind: what’s wrong with this code?
(which builds silently with --Wall and runs without segfaulting!)

17/50 2024-09-24 SSP-RS — S. Tardieu & S. Zacchiroli Hardening System Programming

Valgrind example (cont.)

$ gcc -Wall -o valgrind_me valgrind_me.c # no build-time warnings
$./valgrind_me # no runtime error
$ valgrind --tool=memcheck --leak-check=yes ./valgrind_me

--tool=memcheck chooses Memcheck as Valgrind tool run (which is also the default)
--leak-check=yes asks for details about detected memory leaks, in addition to summary

==459318== Memcheck, a memory error detector
==459318== Copyright (C) 2002-2022, and GNU GPL'd, by Julian Seward et al.
==459318== Using Valgrind-3.19.0 and LibVEX; rerun with -h for copyright info
==459318== Command: ./valgrind_me
==459318==
==459318== Invalid write of size 4
==459318== at 0x109157: f (valgrind_me.c:5)
==459318== by 0x109168: main (valgrind_me.c:9)
==459318== Address 0x4a5e068 is 0 bytes after a block of size 40 alloc'd
==459318== at 0x48407B4: malloc (vg_replace_malloc.c:381)
==459318== by 0x10914A: f (valgrind_me.c:4)
==459318== by 0x109168: main (valgrind_me.c:9)

[continues...]

18/50 2024-09-24 SSP-RS — S. Tardieu & S. Zacchiroli Hardening System Programming

Valgrind example (cont.)

$ valgrind --tool=memcheck --leak-check=yes ./valgrind_me
[...continues]

==459318== HEAP SUMMARY:
==459318== in use at exit: 40 bytes in 1 blocks
==459318== total heap usage: 1 allocs, 0 frees, 40 bytes allocated
==459318==
==459318== 40 bytes in 1 blocks are definitely lost in loss record 1 of 1
==459318== at 0x48407B4: malloc (vg_replace_malloc.c:381)
==459318== by 0x10914A: f (valgrind_me.c:4)
==459318== by 0x109168: main (valgrind_me.c:9)
==459318==
==459318== LEAK SUMMARY:
==459318== definitely lost: 40 bytes in 1 blocks
==459318== indirectly lost: 0 bytes in 0 blocks
==459318== possibly lost: 0 bytes in 0 blocks
==459318== still reachable: 0 bytes in 0 blocks
==459318== suppressed: 0 bytes in 0 blocks
==459318==
==459318== For lists of detected and suppressed errors, rerun with: -s
==459318== ERROR SUMMARY: 2 errors from 2 contexts (suppressed: 0 from 0)

19/50 2024-09-24 SSP-RS — S. Tardieu & S. Zacchiroli Hardening System Programming

Valgrind — an assessment

(For the specific use case of detecting memory-safety issues.)

Pros:

Works with any binary executable produced by any compiler (you don’t even need the source
code!). It feels like magic!

Cons:

Performances: 20-30x slowdown w.r.t. original binary (intuition: you are simulating and verifying
all memory operations)
Some technical limitations (e.g., kernel code, self-modifying code, etc.)
Doesn’t detect stack overflows in the general case: the stack is just a chunk of memory, not
handled by a dedicated allocator

(Still, Valgrind is great!)

20/50 2024-09-24 SSP-RS — S. Tardieu & S. Zacchiroli Hardening System Programming

Valgrind — references

1. Julian Seward, Nicholas Nethercote. Using Valgrind to Detect Undefined Value Errors with
Bit-Precision�. USENIX Annual Technical Conference, General Track 2005: 17-30

2. Nicholas Nethercote, Julian Seward. Valgrind: a framework for heavyweight dynamic binary
instrumentation�. PLDI 2007: 89-100

First paper is mostly about Memcheck; second one mostly about Valgrind as a generic framework.

21/50 2024-09-24 SSP-RS — S. Tardieu & S. Zacchiroli Hardening System Programming

https://www.usenix.org/legacy/events/usenix05/tech/general/full_papers/seward/seward_html/index.html
https://www.usenix.org/legacy/events/usenix05/tech/general/full_papers/seward/seward_html/index.html
https://doi.org/10.1145/1250734.1250746
https://doi.org/10.1145/1250734.1250746

Source code instrumentation — LLVM sanitizers

Same basic idea of Valgrind, but instrumentation happens at compile time, when translating
from source code to binary code. (The actual verification still happens at runtime though!)
This way the instrumentation tool can benefit from additional information available only at
compile-time, e.g., everything related to source code semantics like types, scopes, etc.

Instrumentation tools based on source code instrumentation are often called sanitizers (= they check
the “health” of your code). Clang�—the C compiler frontend of the LLVM� compiler infrastructure
project—comes with a number of built-in sanitizers. E.g.:

AddressSanitizer� memory error detector: out-of-bounds (OOB) accesses (including in the stack!),
use-after-free, double free

LeakSanitizer� memory leak detector (often combined with AddressSanitizer)
MemorySanitizer� uninitialized read detector
ThreadSanitizer� data race detector
UndefinedBehaviorSanitizer� detector of undefined behavior situations (as per language

specification)
22/50 2024-09-24 SSP-RS — S. Tardieu & S. Zacchiroli Hardening System Programming

https://clang.llvm.org/
https://llvm.org/
https://clang.llvm.org/docs/AddressSanitizer.html
https://clang.llvm.org/docs/LeakSanitizer.html
https://clang.llvm.org/docs/MemorySanitizer.html
https://clang.llvm.org/docs/ThreadSanitizer.html
https://clang.llvm.org/docs/UndefinedBehaviorSanitizer.html

LLVM sanitizers — example

1 #include <stdio.h>
2
3 int main(int argc, char** argv) {
4 int *a = new int[10];
5 a[5] = 0;
6 if (a[argc])
7 printf("xx\n");
8 return 0;
9 } // source: https://clang.llvm.org/docs/MemorySanitizer.html

$ clang++ -fsanitize=memory -g -o sanitize_me sanitize_me.cc

$./sanitize_me
==468705==WARNING: MemorySanitizer: use-of-uninitialized-value

#0 0x560150345550 in main [..]/sanitize_me.cc:6:6
#1 0x7f317af67189 in __libc_start_call_main csu/../sysdeps/nptl/libc_start_call_main.h:58:16
#2 0x7f317af67244 in __libc_start_main csu/../csu/libc-start.c:381:3
#3 0x5601502bd2a0 in _start ([..]/sanitize_me+0x222a0) (BuildId: 35a9ca407189643cde6ff5a9[..])

SUMMARY: MemorySanitizer: use-of-uninitialized-value [..]/sanitize_me.cc:6:6 in main
Exiting

23/50 2024-09-24 SSP-RS — S. Tardieu & S. Zacchiroli Hardening System Programming

LLVM sanitizers — an assessment

Comparative pros/cons w.r.t. our previous assessment of Valgrind (everything else still applies):

Pros:

Slightly faster, thanks to compile-time optimizations

Can detect more issues (e.g., stack overflows) thanks to additional code knowledge
int f() {

char buf[8]; // Record stack buffer "buf" with size 8
buf[16] = 'a'; // Record write to "buf" with offset 16

}
// ^- this wasn't detectable with Valgrind, as the knowledge that buf is a buffer
// allocated on the stack is lost (= hard to determine automatically) in the binary

Cons:

Need source code & recompilation

(Still, sanitizers are great!)

24/50 2024-09-24 SSP-RS — S. Tardieu & S. Zacchiroli Hardening System Programming

The problem with dynamic analysis

Dynamic analysis can only detect bad behavior that actually happens during testing.

Testing helps, but you will still only find problems if your program exhibits them on test inputs.
(And given in general program inputs are infinite you cannot brute force your way out of this.)

How can we find (automatically) weird edge cases that trigger bad behavior with high probability?

25/50 2024-09-24 SSP-RS — S. Tardieu & S. Zacchiroli Hardening System Programming

Fuzzing

26/50 2024-09-24 SSP-RS — S. Tardieu & S. Zacchiroli Hardening System Programming

Fuzzing

Definition (Fuzzing)
In programming and software development, fuzzing (or fuzz testing) is an automated software
testing technique that involves providing invalid, unexpected, or random data as inputs
to a computer program. The program is then monitored for exceptions such as crashes,
failing built-in code assertions, or potential memory leaks. — Wikipedia�

Semi-automated in most cases, due to the need of providing bad but well-formed inputs
Very-effective, especially for security vulnerabilities: both memory safety and non-sanitized inputs

• E.g., what does your program do if you pass 1 MiB or random data as input instead of an integer?
Can operate on various input sources of a software component, including:

• Black box: CLI arguments, standard I/O streams, filesystem
• White box: function arguments

Seminal work: class assignment from 1988, showing that 24% of standard UNIX utilities at the
time could be crashed by feeding them nasty inputs; see:
Miller et al. An Empirical Study of the Reliability of UNIX Utilities�. CACM 33(12): 32-44 (1990)

27/50 2024-09-24 SSP-RS — S. Tardieu & S. Zacchiroli Hardening System Programming

https://en.wikipedia.org/wiki/Fuzzing
https://dl.acm.org/doi/10.1145/96267.96279

Fuzzing (cont.)

Start from a given (domain-specific and/or random) input, inspect program state at runtime (as with all
other dynamic analysis techniques).

28/50 2024-09-24 SSP-RS — S. Tardieu & S. Zacchiroli Hardening System Programming

Fuzzing (cont.)

Found new behavior, “kill” mutants (= ignore them from now on) that did not lead to new behavior.

29/50 2024-09-24 SSP-RS — S. Tardieu & S. Zacchiroli Hardening System Programming

Fuzzing (cont.)

Continue until problematic behavior is observed (or forever…).
(Image by Eberhardt et al., full credits on last slide.)

30/50 2024-09-24 SSP-RS — S. Tardieu & S. Zacchiroli Hardening System Programming

Fuzzers

Some open source fuzzers:

AFL++� security-oriented fuzzer, descendant of AFL (American Fuzzy Loop)

LibFuzzer� library-level tester, part of LLVM�. Guided by code coverage provided by LLVM’s
coverage sanitizer�.

zzuf� transparent binary fuzzer, intercepting I/O operations (e.g., filesystem, network)

OSS-Fuzz� not a fuzzer per se, but a project by Google, Core Infrastructure Initiative, and OpenSSF
to continuously fuzz open source software products.

You can apply to have your favorite FOSS product fuzzed�; if selected (Google
decides…), the product will be periodically fuzzed and found issues reported back
upstream
Multiple fuzzers used: LibFuzzer�, AFL++�, Honggfuzz�, and Centipede�

Self-assessment: “As of June 2021, OSS-Fuzz has found over 30 000 bugs in 500
open source projects.”

31/50 2024-09-24 SSP-RS — S. Tardieu & S. Zacchiroli Hardening System Programming

https://github.com/AFLplusplus/AFLplusplus
https://llvm.org/docs/LibFuzzer.html
https://llvm.org/
https://clang.llvm.org/docs/SanitizerCoverage.html
https://clang.llvm.org/docs/SanitizerCoverage.html
https://github.com/samhocevar/zzuf
https://google.github.io/oss-fuzz/
https://google.github.io/oss-fuzz/getting-started/accepting-new-projects/
https://llvm.org/docs/LibFuzzer.html
https://github.com/AFLplusplus/AFLplusplus
https://github.com/google/honggfuzz
https://github.com/google/centipede

LibFuzzer — example

Let’s reconsider our str_is_even function:
1 int str_is_even(const char *s) {
2 int i = 0;
3 if (s == NULL) {
4 return -1;
5 } else {
6 for (i = 0; s[i] != '\0'; i++);
7 return (i % 2 == 0);
8 }
9 }

Q: what’s wrong with this code?

Let’s find out using LibFuzzer. First, let’s add a fuzz target function:
extern "C" int LLVMFuzzerTestOneInput(const uint8_t *data, size_t size) {

char buf[size];
memcpy(buf, data, size);
str_is_even(buf); // call str_is_even on fuzzed string
return 0;

}

32/50 2024-09-24 SSP-RS — S. Tardieu & S. Zacchiroli Hardening System Programming

LibFuzzer — example (cont.)

Second: let’s fuzz!
$ clang++ -g -fsanitize=address,fuzzer -o fuzz_is_even fuzz_is_even.cc
$./fuzz_is_even
INFO: Running with entropic power schedule (0xFF, 100).
INFO: Seed: 791004351
[..]
==1016895==ERROR: AddressSanitizer: dynamic-stack-buffer-overflow on address 0x7ffc7fb144a0 at pc 0x55d934426fe4 bp 0x7ffc7fb14430 sp 0x7ffc7fb14428
READ of size 1 at 0x7ffc7fb144a0 thread T0

#0 0x55d934426fe3 in str_is_even(char const*) fuzz_is_even.cc:10:15
[..]
SUMMARY: AddressSanitizer: dynamic-stack-buffer-overflow fuzz_is_even.cc:10:15 in str_is_even(char const*)
Shadow bytes around the buggy address:
[..]
0x10000ff5a880: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

=>0x10000ff5a890: ca ca ca ca[cb]cb cb cb 00 00 00 00 00 00 00 00
0x10000ff5a8a0: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

[..]
Shadow byte legend (one shadow byte represents 8 application bytes):
Addressable: 00
Left alloca redzone: ca
Right alloca redzone: cb

33/50 2024-09-24 SSP-RS — S. Tardieu & S. Zacchiroli Hardening System Programming

LibFuzzer — example (cont.)

Q: what’s the right fix?

int str_is_even2(const char *s, size_t len) {
int i = 0;
if (s == NULL) {

return -1;
} else {

for (i = 0; i < len && s[i] != '\0'; i++);
return (i % 2 == 0);

}
}

extern "C" int LLVMFuzzerTestOneInput(const uint8_t *data, size_t size) {
char buf[size];
memcpy(buf, data, size);
str_is_even2(buf, size);
return 0;

}

A: Passing an explicit len parameter (which will break API and ABI but cannot be avoided!).

34/50 2024-09-24 SSP-RS — S. Tardieu & S. Zacchiroli Hardening System Programming

LibFuzzer — example (cont.)
$./fuzz_is_even2
INFO: Running with entropic power schedule (0xFF, 100).
INFO: Seed: 879222034
INFO: Loaded 1 modules (7 inline 8-bit counters): 7 [0x561e3ff7aea0, 0x561e3ff7aea7),
INFO: Loaded 1 PC tables (7 PCs): 7 [0x561e3ff7aea8,0x561e3ff7af18),
INFO: -max_len is not provided; libFuzzer will not generate inputs larger than 4096 bytes
INFO: A corpus is not provided, starting from an empty corpus
#2 INITED cov: 6 ft: 6 corp: 1/1b exec/s: 0 rss: 32Mb
#3 NEW cov: 6 ft: 8 corp: 2/3b lim: 4 exec/s: 0 rss: 32Mb L: 2/2 MS: 1 InsertByte-
#12 NEW cov: 6 ft: 10 corp: 3/6b lim: 4 exec/s: 0 rss: 32Mb L: 3/3 MS: 4 ShuffleBytes-ChangeBit-CrossOver-CrossOver-
#17 NEW cov: 6 ft: 12 corp: 4/10b lim: 4 exec/s: 0 rss: 32Mb L: 4/4 MS: 5 EraseBytes-InsertByte-CopyPart-CopyPart-CopyPart-
#444 NEW cov: 6 ft: 14 corp: 5/18b lim: 8 exec/s: 0 rss: 32Mb L: 8/8 MS: 2 InsertRepeatedBytes-InsertByte-
#1516 NEW cov: 6 ft: 16 corp: 6/35b lim: 17 exec/s: 0 rss: 32Mb L: 17/17 MS: 2 InsertRepeatedBytes-InsertRepeatedBytes-
#1593 REDUCE cov: 6 ft: 16 corp: 6/34b lim: 17 exec/s: 0 rss: 33Mb L: 16/16 MS: 2 CopyPart-EraseBytes-
#3361 NEW cov: 6 ft: 18 corp: 7/66b lim: 33 exec/s: 0 rss: 33Mb L: 32/32 MS: 3 CopyPart-ChangeBinInt-InsertRepeatedBytes-
#13170 NEW cov: 6 ft: 20 corp: 8/194b lim: 128 exec/s: 0 rss: 33Mb L: 128/128 MS: 4 ChangeBit-CMP-CopyPart-InsertRepeatedBytes- DE: "\253\377\377\377"-
#2097152 pulse cov: 6 ft: 20 corp: 8/194b lim: 4096 exec/s: 1048576 rss: 244Mb
#4194304 pulse cov: 6 ft: 20 corp: 8/194b lim: 4096 exec/s: 838860 rss: 456Mb
#8388608 pulse cov: 6 ft: 20 corp: 8/194b lim: 4096 exec/s: 762600 rss: 521Mb
[..]

Fuzzing will run for a while this time…
35/50 2024-09-24 SSP-RS — S. Tardieu & S. Zacchiroli Hardening System Programming

Static analysis

36/50 2024-09-24 SSP-RS — S. Tardieu & S. Zacchiroli Hardening System Programming

Static program analysis

With dynamic program analysis we execute a program (with instrumentation and/or in a particular
simulated environment, etc.) in order to analyze it
With static program analysis the analysis is done without executing the program, usually by just
looking at the program source code
Many techniques for doing this exist and decades of CS research have been devoted to them, e.g.:

• abstract interpretation
• data-flow analysis
• formal proofs of program correctness
• model checking
• symbolic execution
• …

In this lecture we will just cover the basic idea to understand why it is difficult and how it can help
in hardening system programming

37/50 2024-09-24 SSP-RS — S. Tardieu & S. Zacchiroli Hardening System Programming

Linting

One of the most basic forms of static analysis is called “linting” in programming jargon.

Stephen C. Johnson, a computer scientist at Bell Labs, came up with lint in 1978 […] The
term “lint” was derived from the name of the tiny bits of fiber and fluff shed by clothing, as the
command should act like a dryer machine lint trap, detecting small errors with big effects. —
Wikipedia�

A linter verifies the source code of a program against a set of syntactic rules
In its most basic form the linter verifies that the code adheres to a coding style guide

• e.g., from the Google C++ Style Guide�:
All header files should have #define guards to prevent multiple inclusion
#ifndef FOO_BAR_BAZ_H_
#define FOO_BAR_BAZ_H_

Verification is textual (e.g., some form of text search) and automatic fixing can be supported as
well (e.g., text replacement)

38/50 2024-09-24 SSP-RS — S. Tardieu & S. Zacchiroli Hardening System Programming

https://en.wikipedia.org/wiki/Lint_(software)
https://google.github.io/styleguide/cppguide.html

Linting (cont.)

Linting is most useful for style issues and shines at ensuring that all developers working on the
same code base write uniform code that does not distract due to visual/style differences
Linters are generally integrated into tooling (e.g., commit-time hooks) and CI pipelines (e.g., fail
the build in case of non-adherence)
In very limited cases linting can also prevent memory-related bad practices

• e.g., “do not use gets()”, which is trivial to detect textually
• quite prone to false positives, e.g., you can use strcpy safely, but many security linters will

complain and recommend to use strncpy instead

Some linters and linter-related tooling

Clang-Tidy� for C/C++ (which also does more advanced static analysis, more on this later)
flake8� and Black� for Python
Checkstyle� for Java
…
Gitlint� for Git commit messages
pre-commit�: general framework to enforce linting at commit time

39/50 2024-09-24 SSP-RS — S. Tardieu & S. Zacchiroli Hardening System Programming

https://clang.llvm.org/extra/clang-tidy/
https://flake8.pycqa.org/
https://github.com/psf/black
https://checkstyle.sourceforge.io/
https://jorisroovers.com/gitlint/
https://pre-commit.com/

Data-flow analysis

Linting is widely used to enforce coding styles, but not very effective at detecting safety issues.
Moving toward more powerful techniques for this task, the state-of-the-art of pragmatic static
analysis tools is data-flow analysis.

• (Even more powerful techniques exist, such as formal proofs of program correctness, but they are still
too expensive and difficult to be widely applicable. They are hence currently used primarily for small
and mission critical systems.)

Data-flow analysis

A static analysis techniques used to prove facts about a program or a fragment of it
Takes into account the control flow graph (CFG) of the program (i.e., the order of execution of
program instructions)
Keep track of all possible values that variables (or other stateful parts) can take during execution
Key idea: propagate facts along the edges of the CFG until a fixed point is reached

40/50 2024-09-24 SSP-RS — S. Tardieu & S. Zacchiroli Hardening System Programming

Data-flow analysis — example 1

1 void printToUpper(const char *str) {
2 char *upper = strdup(str);
3 for (int i = 0; str[i] != '\0'; i++) {
4 if(str[i] >= 'a' && str[i] <= 'z') {
5 upper[i] = str[i] - ('a' - 'A');
6 }
7 }
8 printf("%s\n", upper);
9 free(upper);

10 }
11
12 int main(int argc, char *argv[]) {
13 printf("Enter a string to uppercase, or type \"quit\" to quit:\n");
14 char input[512];
15 fgets(input, sizeof(input), stdin); // safely read input string
16 char *toMakeUppercase;
17 if (strcmp(input, "quit") != 0) {
18 toMakeUppercase = input;
19 }
20 printToUpper(toMakeUppercase);
21 }

41/50 2024-09-24 SSP-RS — S. Tardieu & S. Zacchiroli Hardening System Programming

Data-flow analysis — example 1 (cont.)

printf("Enter a string to uppercase, or type \"quit\" to quit:\n");
char input[512];
fgets(input, sizeof(input), stdin);
char *toMakeUppercase;

// <- toMakeUpperCase = { undef }
if (strcmp(input, "quit") != 0) {

// <- toMakeUpperCase = { undef }
toMakeUppercase = input;

// <- toMakeUpperCase = { input }
}

// <- toMakeUpperCase = { undef, input }
printToUpper(toMakeUppercase);

Static analysis result: Error: printToUpper() might be called on an uninitialized argument.

42/50 2024-09-24 SSP-RS — S. Tardieu & S. Zacchiroli Hardening System Programming

Data-flow analysis — example 2

1 int main(int argc, char *argv[]) {
2 // Goal: parse the substring between brackets, e.g., "foo [bar]" -> "bar"
3 char *parsed = strdup(argv[1]);
4 char *open_bracket = strchr(parsed, '['); // Find open bracket
5 if (open_bracket == NULL) {
6 printf("Malformed input!\n");
7 return 1;
8 }
9 parsed = open_bracket + 1; // Make result string start after open bracket

10
11 char *close_bracket = strchr(parsed, ']'); // Find the close bracket
12 if (close_bracket == NULL) {
13 printf("Malformed input!\n");
14 return 1;
15 }
16 *close_bracket = '\0'; // Replace close bracket with null terminator
17 printf("Parsed string: %s\n", parsed);
18 free(parsed);
19 return 0;
20 }

43/50 2024-09-24 SSP-RS — S. Tardieu & S. Zacchiroli Hardening System Programming

Data-flow analysis — example 2 (cont.)
char *parsed = strdup(argv[1]);

// <- parsed = { heap allocation }
char *open_bracket = strchr(parsed, '[');
if (open_bracket == NULL) {

printf("Malformed input!\n");
return 1;

// <- parsed = { heap allocation }, but disappeared local variable!
}
parsed = open_bracket + 1;
char *close_bracket = strchr(parsed, ']');
if (close_bracket == NULL) {

printf("Malformed input!\n");
return 1;

}
*close_bracket = '\0';
printf("Parsed string: %s\n", parsed);
free(parsed);
return 0;

Static analysis result: Error: possible memory leak.
Compare with Valgrind: here we know it might happen even if we haven’t witnessed it;
Valgrind would detect that it does happen, but only when given the “right” input.

44/50 2024-09-24 SSP-RS — S. Tardieu & S. Zacchiroli Hardening System Programming

Static analysis with Clang-Tidy
void free_me_maybe(void *buf) {

if (rand() == 1)
return;

free(buf);
}
int main() {

void *buf = malloc(42);
free_me_maybe(buf);
return 0;

} // end of random_leak.c

$ clang-tidy random_leak.c
random_leak.c:13:2: warning: Potential leak of memory pointed to by 'buf' [clang-analyzer-unix.Malloc]

return 0;
^

random_leak.c:11:14: note: Memory is allocated
void *buf = malloc(42);

^~~~~~~~~~
random_leak.c:13:2: note: Potential leak of memory pointed to by 'buf'

return 0;
^

Good read on how this gets much more complicated in practice: Data flow analysis: an informal
introduction� (part of Clang-Tidy� documentation).

45/50 2024-09-24 SSP-RS — S. Tardieu & S. Zacchiroli Hardening System Programming

https://clang.llvm.org/docs/DataFlowAnalysisIntro.html
https://clang.llvm.org/docs/DataFlowAnalysisIntro.html
https://clang.llvm.org/extra/clang-tidy/

Static analysis of an entire build with scan-build

From https://clang-analyzer.llvm.org/scan-build.html:
scan-build is a command line utility that enables a user to run the [Clang-Tidy] static analyzer
over their codebase as part of performing a regular build (from the command line). scan-build
has little or no knowledge about how you build your code. It works by overriding the CC and
CXX environment variables to (hopefully) change your build to use a “fake” compiler instead
of the one that would normally build your project. This fake compiler executes either clang or
gcc (depending on the platform) to compile your code and then executes the static analyzer
to analyze your code. This “poor man’s interposition” works amazingly well in many cases
and falls down in others.

In practice:

If you have a properly written standard Makefile that run as make to orchestrate a build,
you can run scan-build make instead to have all the build source code statically analyzed.
See for example the Firefox scan-build results maintained by Sylvestre Ledru at
https://sylvestre.ledru.info/reports/fx-scan-build/.

46/50 2024-09-24 SSP-RS — S. Tardieu & S. Zacchiroli Hardening System Programming

https://clang-analyzer.llvm.org/scan-build.html
https://sylvestre.ledru.info/reports/fx-scan-build/

Static analysis — an assessment

Pros:

Will detect issues that do not arise in testing (manual and/or via automated test suites).
• This is HUGE! It addresses the main problem of dynamic analysis.

Cons:

Prone to false positives: precisely because it identifies all potential issues, static analysis could
flag theoretical issues that (for reasons unknown to the static analyzer) cannot occur in practice.

• Tuning and/or overrides mitigate this problem.
• The main difficulty for any static analyzer is providing a good signal/noise ratio to be worth it.

Practical limitations: unbound values, loops, programs with many components make the
combinatorics of data-flow analysis explode. This results in either very-slow (to impossible)
analysis, or cutoffs that reduce the thoroughness of the analysis.
(Also, recall that in the general case it is impossible to automatically prove that any specific bug is
absent from an arbitrary input program.)

47/50 2024-09-24 SSP-RS — S. Tardieu & S. Zacchiroli Hardening System Programming

Better tooling

48/50 2024-09-24 SSP-RS — S. Tardieu & S. Zacchiroli Hardening System Programming

Takeaways

Many techniques and practical tools exist to improve the security and quality of system programs:
• Unit testing
• Binary code instrumentation
• Source code instrumentation
• Fuzzing
• Static analysis

You should use all of them systematically, because they make your code more secure.
There is no silver bullet though, they are not enough to secure your system programs.

What’s next?
Starting next week we will dive into the Rust memory model, which is capable of guaranteeing (unlike all
the techniques reviewed today) the absence of specific classes of security-related issues (e.g., memory
unsafety and data races) at the price of having to program a little bit differently when it comes to
memory handling.

49/50 2024-09-24 SSP-RS — S. Tardieu & S. Zacchiroli Hardening System Programming

Credits

These slides contain material and ideas reused with permission from lecture 2 of Stanford’s
course CS 110L� (2022) by Ryan Eberhardt, Armin Namavari, Will Crichton, Julio Ballista, and
Thea Rossman.

50/50 2024-09-24 SSP-RS — S. Tardieu & S. Zacchiroli Hardening System Programming

https://web.stanford.edu/class/cs110l/

	How do we find (security) bugs in system programs?
	Testing
	Dynamic analysis
	Fuzzing
	Static analysis
	Better tooling

