
Unsafe System Programming
SSP-RS — Safe System Programming (in Rust)

Samuel Tardieu Stefano Zacchiroli
2024-09-17

System programming

2/36 2024-09-17 SSP-RS — S. Tardieu & S. Zacchiroli Unsafe System Programming

Programming layered architectures

The architectures of modern computing systems are massively layered. When programming, we target
specific layers. E.g., from bottom to top:

(5) (and up…) virtual architectures / virtual machines
(4) application level (business-oriented, frameworks, 4GL)
(3) system level (system languages, system calls, 3GL)
(2) assembly level (assembly languages, interrupts, 2GL)
(1) hardware level (firmware, microcode, 1GL)

Each level is characterized by/highly correlated with:

mechanisms and APIs to interact with lower layers
suitable programming languages (and their generations)

3/36 2024-09-17 SSP-RS — S. Tardieu & S. Zacchiroli Unsafe System Programming

Which layer to target

The choice of layer reveals important trade-offs.

Performances. Targeting a lower layer might grant better performances.
• Writing a performance critical routine in assembly might deliver orders of magnitude speed

improvements w.r.t. programming higher layers.
• “Reimplement at lower layer” is a technique often used for performance-critical code such as device

drivers, multimedia codecs, cryptography routines, etc.
Portability. Targeting a higher layer usually guarantees better portability.

• Much better than all lower layer equivalents that might be generated from the chosen layer.
• E.g.: a block of standard ISO C 99 code can be compiled using gcc to more than 70 different target

processors.
Maintainability. Targeting a higher layer usually makes writing code easier and the resulting code
more maintainable than if it were written targeting lower layers.

• This is largely a consequence of the used programming languages.

4/36 2024-09-17 SSP-RS — S. Tardieu & S. Zacchiroli Unsafe System Programming

System programming — an informal definition

System programming
System programming is the art of writing system software.

— Robert Love, Linux System Programming: Talking Directly to the Kernel and C Library�

System software

System software is “low-level” software that interfaces directly with:
the kernel of the operating system
core system libraries (e.g., the C standard library)

Examples

System software that you use daily (possibly without realizing it) includes: system services (cron, print
spool, power and session management, backup, etc.), network services (web servers, mail servers,
database management systems, etc.), toolchains (shell, compiler, interpreter, debugger).

Try ps -auxw on a UNIX shell. Most of what you see there is system-level software.
5/36 2024-09-17 SSP-RS — S. Tardieu & S. Zacchiroli Unsafe System Programming

https://www.oreilly.com/library/view/linux-system-programming/9781449341527/

System programming — why bother?

1. Legacy code—such as system utilities—is not going away any time soon; in some cases it is also
basis for standardization (e.g., UNIX utilities)

• In the Free Software world, the majority of existing code (50%+ of Debian, see Barahona et al.,
2009�) is system-level C code

2. New system-level tasks born on a regular basis, to cope with application-level evolution

• E.g., an increasing number of new applications is written in JavaScript, for the Web, desktops, and
mobiles

• therefore we need new and better JavaScript (JIT) compilers; most of their code is system-level code

This course
Observation: system programs and system programming are here to stay.
This course main topic: how to make system programming safe.

6/36 2024-09-17 SSP-RS — S. Tardieu & S. Zacchiroli Unsafe System Programming

http://dx.doi.org/10.1007/s10664-008-9100-x
http://dx.doi.org/10.1007/s10664-008-9100-x

Unsafe system programming

7/36 2024-09-17 SSP-RS — S. Tardieu & S. Zacchiroli Unsafe System Programming

“Convert a String to Uppercase in C”

Quasi-verbatim quote from Tutorials Point solution� to this problem (archived copy�).
(Because you never blindly reuse code snippets from the Web or ChatGPT, do you?)

1 #include <stdio.h>
2 #include <string.h>
3
4 int main() {
5 char s[100];
6 int i;
7 printf("\nEnter a string : ");
8 gets(s);
9 for (i = 0; s[i] != '\0'; i++) {

10 if(s[i] >= 'a' && s[i] <= 'z') {
11 s[i] = s[i] - 32;
12 }
13 }
14 printf("\nString in Upper Case = %s\n", s);
15 return 0;
16 }

Q: what’s the problem with this code?

8/36 2024-09-17 SSP-RS — S. Tardieu & S. Zacchiroli Unsafe System Programming

https://www.tutorialspoint.com/convert-a-string-to-uppercase-in-c
https://web.archive.org/web/20221221215257/https://www.tutorialspoint.com/convert-a-string-to-uppercase-in-c

man 3 gets (before ISO C11)
gets - get a string from standard input

SYNOPSIS
#include <stdio.h>

char *gets(char *s);

DESCRIPTION
gets() reads a line from stdin into the buffer pointed to by s until either a terminating
newline or EOF, which it replaces with a null byte ('\0'). No check for buffer overrun
is performed (see BUGS below).

RETURN VALUE
gets() returns s on success, and NULL on error or when end of file occurs while no characters
have been read. However, given the lack of buffer overrun checking, there can be no
guarantees that the function will even return.

BUGS
Never use gets(). Because it is impossible to tell without knowing the data in advance how
many characters gets() will read, and because gets() will continue to store characters past
the end of the buffer, it is extremely dangerous to use. It has been used to break computer
security.

9/36 2024-09-17 SSP-RS — S. Tardieu & S. Zacchiroli Unsafe System Programming

Memory layout — redux

text

initialized data

data

uninitialized data

bss

heap

stack

The memory layout of a running program is organized in memory segments.
BSS

Historical acronym for “Block Starting Symbol”
Uninitialized static data
E.g., global variables and local static variables with no initial
value

Data
Initialized static data
E.g., global variables and local static variables with initial
values

Text (Code)
Executable code
In a memory segment marked as: executable and (usually)
read-only

10/36 2024-09-17 SSP-RS — S. Tardieu & S. Zacchiroli Unsafe System Programming

Memory layout — redux (cont.)

text

initialized data

data

uninitialized data

bss

heap

stack

The memory layout of a running program is organized in memory segments.
Stack

Call stack: one stack frame per function call in execution
LIFO (last-in, first-out) order, growing downward (toward lower
memory addresses)
Stack pointer (SP) registry pointing to the top of the stack
(lowest address)
Each stack frame contains: return address of the function
being executed, automatic variables (local function variables
and arguments)

Heap
Dynamically allocated memory (e.g., via malloc)
Growing upward (toward higher memory addresses)

11/36 2024-09-17 SSP-RS — S. Tardieu & S. Zacchiroli Unsafe System Programming

Memory layout — example

1 /* Definition of an initialized global variable */
2 int x_global = 1;
3
4 /* Declaration of a global variable that exists somewhere else */
5 extern int y_global;
6
7 /* Declaration of a function that exists somewhere else */
8 int fn_a(int, int, int, int);
9

10 /* Definition of a function. */
11 int fn_b(int x_local) {
12 /* Definition of an initialized local variable */
13 int y_local = 3;
14 static int z_static = 4;
15
16 /* Code that refers to local and global variables and other functions. */
17 x_global = fn_a(x_local, x_global, y_local, y_global);
18 z_static += 1;
19 return (x_global + z_static);
20 }
21 /* end of anatomy.c */

12/36 2024-09-17 SSP-RS — S. Tardieu & S. Zacchiroli Unsafe System Programming

Memory layout — example (cont.)

Non-dynamic segments of the memory layout of executable programs have counterparts that can be
observed in compiled objects using the nm UNIX tool.
$ gcc -Wall -c anatomy.c
$ nm anatomy.o

U fn_a
0000000000000000 T fn_b
0000000000000000 D x_global

U y_global
0000000000000004 d z_static.0

U undefined symbol (code or data segment, not present in this .o linking object)
T defined text symbol (code segment, present in this object)

D/d defined data symbol (data segment, present in this object). Lowercase if local (e.g., not
exported), uppercase if global

13/36 2024-09-17 SSP-RS — S. Tardieu & S. Zacchiroli Unsafe System Programming

Buffer overflows

Let’s go back to our gets() example:

“No check for buffer overrun is performed.” → What can possibly go wrong?

A data buffer is a memory region used to store data in transit from one place to another.
At any given point in time a buffer has a fixed size n, usually measured in bytes; buffer boundaries
correspond to those of the integer interval [0, n-1].
In (many, most) system programming languages there is no runtime check to prevent writing
beyond buffer boundaries.

Buffer overflow
A buffer overflow is a program anomaly that occurs when a data write targeting a buffer writes outside
the buffer boundaries, overwriting neighboring memory.

How severe a buffer overflow is depends on what happens to reside in “neighboring memory”…

14/36 2024-09-17 SSP-RS — S. Tardieu & S. Zacchiroli Unsafe System Programming

Buffer overflow — example
1 #include <string.h>
2
3 void foo(char *bar) {
4 char c[12];
5 strcpy(c, bar); // no bounds checking
6 }
7
8 int main(int argc, char **argv) {
9 foo(argv[1]);

10 return 0;
11 }

SYNOPSIS
char *strcpy(char *restrict dest, const char *restrict src);

DESCRIPTION
The strcpy() function copies the string pointed to by src, including the terminating null
byte ('\0'), to the buffer pointed to by dest. The strings may not overlap, and the
destination string dest must be large enough to receive the copy. Beware of buffer
overruns! (See BUGS.)

(Sounds familiar?)
15/36 2024-09-17 SSP-RS — S. Tardieu & S. Zacchiroli Unsafe System Programming

Buffer overflow — example (cont.)

Before strcpy After strcpy, when
argv[1] = "hello"

After strcpy, when
argv[1] =
"AA[..]AA\x08\x3"

16/36 2024-09-17 SSP-RS — S. Tardieu & S. Zacchiroli Unsafe System Programming

Buffer overflows (cont.)

From there on, all bets are off.

The attacker controls the return point of the function in execution.
They can make it point to an existing different function (altering the execution flow, e.g., to bypass
the execution of security checks).
They can make it point to code that is itself passed as an argument (arbitrary code execution),
provided that they can write to an executable memory segment.
The attacker can also overwrite the content of local variables of other functions, not only the
return address, e.g., to inject authentication credentials.

Good reads
Aleph One. Smashing the stack for fun and profit�. Phrack magazine 7.49 (1996): 14-16.
Jon Gjengset. Smashing the Stack in the 21st Century�. Blog post, 2019.

gets() (as many other functions…) from our previous example can fail in exactly the same way as
strcpy() here, except the input would come from stdin instead of argv.

17/36 2024-09-17 SSP-RS — S. Tardieu & S. Zacchiroli Unsafe System Programming

https://www.cis.upenn.edu/~sga001/classes/cis331f19/resources/stack-smashing.pdf
https://thesquareplanet.com/blog/smashing-the-stack-21st-century/

man 3 gets (ISO C11)

And indeed the doc of modern gets says:
gets - get a string from standard input (DEPRECATED)

SYNOPSIS
[[deprecated]] char *gets(char *s);

DESCRIPTION
Never use this function.

gets() reads a line from stdin into the buffer pointed to by s until either a terminating
newline or EOF, which it replaces with a null byte ('\0'). No check for buffer overrun
is performed (see BUGS below).

BUGS
[..] Use fgets() instead.

The [[deprecated]] attribute makes compilers trigger warnings at compile time (by default).

YAY, problem solved! Good developers these days would never do this, right? … RIGHT?

18/36 2024-09-17 SSP-RS — S. Tardieu & S. Zacchiroli Unsafe System Programming

Cars Attacks!

Checkoway et al. Comprehensive Experimental Analyses of Automotive Attack Surfaces�. USENIX
Security Symposium 2011.

“Like many modern cars, our car’s cellular capabilities facilitate a variety of safety and convenience
features (e.g. the car can automatically call for help if it detects a crash). However, long-range
communication channels also offer an obvious target for potential attackers…”

“To synthesize a digital channel in this environment, the manufacturer uses Airbiquity’s aqLink
software modem [analog radio, as backup for missing cellular network at the time] to convert
between analog waveforms and digital bits.”

“the aqLink code explicitly supports packet sizes up to 1024 bytes. However, the custom code that
glues aqLink to the Command program assumes that packets will never exceed 100 bytes or so
(presumably since well-formatted command messages are always smaller). This leads to another
stack-based buffer overflow vulnerability that we verified is exploitable.”

19/36 2024-09-17 SSP-RS — S. Tardieu & S. Zacchiroli Unsafe System Programming

https://www.usenix.org/legacy/event/sec11/tech/full_papers/Checkoway.pdf

Cars Attacks! (cont.)

Checkoway et al. Comprehensive Experimental Analyses of Automotive Attack Surfaces�. USENIX
Security Symposium 2011.

“We also found that the entire attack can be implemented in a completely blind fashion— without
any capacity to listen to the car’s responses. Demonstrating this, we encoded an audio file with the
modulated post-authentication exploit payload and loaded that file onto an iPod. By manually
dialing our car on an office phone and then playing this “song” into the phone’s microphone, we
are able to achieve the same results and compromise the car”

Discuss
10+ years later, do you think the situation of cars security is any better or any worse? Why?

20/36 2024-09-17 SSP-RS — S. Tardieu & S. Zacchiroli Unsafe System Programming

https://www.usenix.org/legacy/event/sec11/tech/full_papers/Checkoway.pdf

Some dangerous software weaknesses

21/36 2024-09-17 SSP-RS — S. Tardieu & S. Zacchiroli Unsafe System Programming

Background — Terminology about known vulnerabilities: CVE, CWE

Common Vulnerabilities and Exposures (CVE)
The Common Vulnerabilities and Exposures (CVE) system provides a reference-method
for publicly known information-security vulnerabilities and exposures. The United States’
National Cybersecurity FFRDC, operated by The MITRE Corporation, maintains the system
[…]. The system was officially launched for the public in September 1999. (Wikipedia�)

Examples of public vulnerability databases using CVEs: https://cve.mitre.org, https://nvd.nist.gov,
https://osv.dev.

Common Weakness Enumeration (CWE)
The Common Weakness Enumeration (CWE) is a category system for hardware and software
weaknesses and vulnerabilities. It is sustained by a community project with the goals of
understanding flaws in software and hardware and creating automated tools that can be used
to identify, fix, and prevent those flaws. The project is sponsored by the National Cybersecurity
FFRDC, which is operated by The MITRE Corporation […]. (Wikipedia�)

22/36 2024-09-17 SSP-RS — S. Tardieu & S. Zacchiroli Unsafe System Programming

https://en.wikipedia.org/wiki/Common_Vulnerabilities_and_Exposures
https://cve.mitre.org
https://nvd.nist.gov
https://osv.dev
https://en.wikipedia.org/wiki/Common_Weakness_Enumeration

Moar buffer overflows in vulnerability databases

Search results for “buffer overflow” at https://cve.mitre.org/cve/search_cve_list.html (2022-12-09):

At the time the database contained 190 175 CVE records, 7% of which were related to buffer overflows.
How about other memory-related issues?

23/36 2024-09-17 SSP-RS — S. Tardieu & S. Zacchiroli Unsafe System Programming

https://cve.mitre.org/cve/search_cve_list.html

2022 CWE Top 25 Most Dangerous Software Weaknesses
Source: MITRE�.
The KEV Count shows
the number of 2020 and
2021 CVEs that are
known to have been
exploited in the wild
(hence there are more
CVEs related to these
CWEs, either not
exploited or not known to
have been).

Can you spot the
memory-related
vulnerability classes?

24/36 2024-09-17 SSP-RS — S. Tardieu & S. Zacchiroli Unsafe System Programming

https://cwe.mitre.org/top25/archive/2022/2022_cwe_top25.html

2022 CWE Top 25 vs memory safety

25/36 2024-09-17 SSP-RS — S. Tardieu & S. Zacchiroli Unsafe System Programming

Out-of-bounds write (CWE-787)

Description
The software writes data past the end, or before the beginning, of the intended buffer.

Impact: data corruption, crash, code execution
We have already seen two examples of this
There are more! https://cwe.mitre.org/data/definitions/787.html

Let’s move on to the other classes.

26/36 2024-09-17 SSP-RS — S. Tardieu & S. Zacchiroli Unsafe System Programming

https://cwe.mitre.org/data/definitions/787.html

Out-of-bounds read (CWE-125) — example

Description
The software reads data past the end, or before the beginning, of the intended buffer.

Impact: read sensitive information, crash (e.g., due to segmentation fault)
Spot the bug (level: easy):

1 int getValueFromArray(int *array, int len, int index) {
2 int value;
3 if (index < len) {
4 value = array[index];
5 } else {
6 value = 0;
7 errno = 42; // handle error
8 }
9 return value;

10 }

Good: bound check on the right end of the array
Bad: no bound check on the left end (and index can be negative!)

27/36 2024-09-17 SSP-RS — S. Tardieu & S. Zacchiroli Unsafe System Programming

Out-of-bounds read (CWE-125) — example (cont.)

Description
The software reads data past the end, or before the beginning, of the intended buffer.

Spot the bug (level: hard):
1 char buffer[128];
2 int bytesToCopy = packet.length;
3 if (bytesToCopy < 128) {
4 strncpy(buffer, packet.data, bytesToCopy);
5 }

Good: bounds check, safe version of strcpy
Bad: cast of signed int bytesToCopy to unsigned size_t as 3rd argument of strncpy
More real-world examples: https://cwe.mitre.org/data/definitions/125.html

28/36 2024-09-17 SSP-RS — S. Tardieu & S. Zacchiroli Unsafe System Programming

https://cwe.mitre.org/data/definitions/125.html

Improper restriction of operations within a buffer (CWE-119) — example

More general case of “Out-of-bounds Read” (CWE is in fact a hierarchical taxonomy)
With a very (in)famous example: CVE-2014-0160, AKA Heartbleed

Fix: OpenSSL commit 96db9023b881d7cd9f379b0c154650d6c108e9a3�

More real-world examples: https://cwe.mitre.org/data/definitions/119.html

29/36 2024-09-17 SSP-RS — S. Tardieu & S. Zacchiroli Unsafe System Programming

https://git.openssl.org/gitweb/?p=openssl.git;a=commitdiff;h=96db9023b881d7cd9f379b0c154650d6c108e9a3
https://cwe.mitre.org/data/definitions/119.html

Use After Free (CWE-416) — example

A pointer is used after the memory region it points to is freed.

Spot the bug (level: easy):
1 char* ptr = (char*) malloc(SIZE);
2 if (err) {
3 abrt = 1;
4 free(ptr);
5 }
6 /* ... */
7 if (abrt) { log_err("operation aborted before commit", ptr); }

Common causes:
• Complicated logic to handler errors or other exceptional conditions
• Confusion about who is responsible for deallocating memory

Impact: reading/writing unexpected memory, segmentation fault, code execution
More real-world examples: https://cwe.mitre.org/data/definitions/416.html

30/36 2024-09-17 SSP-RS — S. Tardieu & S. Zacchiroli Unsafe System Programming

https://cwe.mitre.org/data/definitions/416.html

NULL Pointer Dereference (CWE-476) — example

A NULL pointer is dereferenced, as if it were pointing somewhere.

Spot the bug (level: medium):
1 void host_lookup(char *user_supplied_addr) {
2 struct hostent *hp;
3 in_addr_t *addr;
4 char hostname[64];
5 in_addr_t inet_addr(const char *cp);
6
7 validate_addr_form(user_supplied_addr);
8 addr = inet_addr(user_supplied_addr);
9 hp = gethostbyaddr(addr, sizeof(struct in_addr), AF_INET);

10 strcpy(hostname, hp->h_name);
11 }

Common causes: lack of pointer verification, multi-thread race conditions
Impact: crash (which has a security impact: why?)
More real-world examples: https://cwe.mitre.org/data/definitions/476.html

31/36 2024-09-17 SSP-RS — S. Tardieu & S. Zacchiroli Unsafe System Programming

https://cwe.mitre.org/data/definitions/476.html

Concurrent Execution using Shared Resource with Improper
Synchronization (CWE-362, AKA Race Condition) — example

Definition (Race Condition)

A race condition is a situation where multiple execution units access shared data concurrently and the
outcome of the execution depends on the particular order in which accesses take place.

Not all race conditions are security issues. A race is a security issue when one or more of the possible
outcomes violates security requirements.

Spot the bug (level: easy):
1 $transfer_amount = GetTransferAmount();
2 $balance = GetBalanceFromDatabase();
3 if ($transfer_amount < 0) {
4 FatalError("Bad Transfer Amount");
5 }
6 $newbalance = $balance - $transfer_amount;
7 if (($balance - $transfer_amount) < 0) {
8 FatalError("Insufficient Funds");
9 }

10 SendNewBalanceToDatabase($newbalance);
11 NotifyUser("Transfer of $transfer_amount succeeded. New balance: $newbalance.");

32/36 2024-09-17 SSP-RS — S. Tardieu & S. Zacchiroli Unsafe System Programming

Race Condition (CWE-362) — example (cont.)

Mutexes (mutual-exclusion locks) are among the common programming abstractions available to
developers to avoid race conditions.

Unfortunately, they are also notoriously hard to use correctly…

Spot the bug (level: medium):
1 void f(pthread_mutex_t *mutex) {
2 pthread_mutex_lock(mutex);
3
4 /* access shared resource */
5
6 pthread_mutex_unlock(mutex);
7 }

33/36 2024-09-17 SSP-RS — S. Tardieu & S. Zacchiroli Unsafe System Programming

How do we fix this?

34/36 2024-09-17 SSP-RS — S. Tardieu & S. Zacchiroli Unsafe System Programming

Whose fault is this?

Discuss

Don’t blame the developers!
• … if you give them bad tools for the job
• … if they work in bad conditions (e.g., crunches), even “only” sometimes
• … if they are not the right persons for the job (the developer job market is crazy!)

Do you think you will always be able to avoid introducing this kind of bugs?

This course
State-of-the art solutions for either minimizing the risk of or avoiding entirely (by construction) the
introduction of bugs in system programs that could have a severe security impact.

35/36 2024-09-17 SSP-RS — S. Tardieu & S. Zacchiroli Unsafe System Programming

Credits

These slides contain material and ideas reused with permission from lecture 1 of Stanford’s
course CS 110L� (2022) by Ryan Eberhardt, Armin Namavari, Will Crichton, Julio Ballista, and
Thea Rossman.
Images:

• Memory layout image from Wikipedia�, by Dougct, license CC BY-SA 3.0�.
• Stack overflow images from Wikipedia�, by Michael Lynn�, public domain.

36/36 2024-09-17 SSP-RS — S. Tardieu & S. Zacchiroli Unsafe System Programming

https://web.stanford.edu/class/cs110l/
https://en.wikipedia.org/wiki/File:Program_memory_layout.pdf
https://creativecommons.org/licenses/by-sa/3.0/deed.en
https://en.wikipedia.org/wiki/Stack_buffer_overflow
https://en.wikipedia.org/wiki/User:Abaddon314159

	System programming
	Unsafe system programming
	Some dangerous software weaknesses
	How do we fix this?

